References
[1]. Abdullah, M., Wazzan, M., & Bo-Saeed, S. (2012).
Optimizing face recognition using PCA. International
Journal of Artificial Intelligence & Applications, 3(2), 23-31. https://doi.org/10.5121/ijaia.2012.3203
[2]. Agrawal, S., & Khatri, P. (2015, February). Facial
expression detection techniques: based on Viola and
Jones algorithm and principal component analysis. In
2015 Fifth International Conference on Advanced
Computing & Communication Technologies (pp. 108-112). IEEE. https://doi.org/10.1109/ACCT.2015.32
[3]. Anand, B., & Shah, P. K. (2016). Face recognition using
SURF features and SVM classifier. International Journal of
Electronics Engineering Research, 8(1), 1-8.
[4]. Azeem, A., Sharif, M., Raza, M., & Murtaza, M. (2014).
A survey: Face recognition techniques under partial
occlusion. International Arab Journal of Information
Technology, 11(1), 1-10.
[5]. Bellakhdhar, F., Loukil, K., & Abid, M. (2013). Face
recognition approach using Gabor wavelets, PCA and
SVM. International Journal of Computer Science Issues
(IJCSI), 10(2), 201-206.
[6]. Best-Rowden, L., & Jain, A.K. (2015). A longitudinal
study of automatic face recognition. In 2015
International Conference on Biometrics (ICB), 214-221.
https://doi.org/10.1109/ICB.2015.7139087
[7]. Chai, X., Shan, S., & Gao, W. (2003, December). Pose normalization for robust face recognition based on
statistical affine transformation. In Fourth International
Conference on Information, Communications and
Signal Processing, 2003 and the Fourth Pacific Rim
Conference on Multimedia. Proceedings of the 2003
Joint, 3, 1413-1417. IEEE. https://doi.org/10.1109/ICICS.2003.1292698
[8]. Chen, C., Liu, K., & Kehtarnavaz, N. (2016). Real-time
human action recognition based on depth motion maps.
Journal of Real-Time Image Processing, 12(1), 155-163.
https://doi.org/10.1007/s11554-013-0370-1
[9]. Cho, H., Roberts, R., Jung, B., Choi, O., & Moon, S.
(2014). An efficient hybrid face recognition algorithm
using PCA and GABOR wavelets. International Journal of
Advanced Robotic Systems, 11(4), 1-8. https://doi.org/10.5772/58473
[10]. Gorde, M. S. H., & Singh, M. M. K. (2017). A review on
face recognition algorithms. Asian Journal for
Convergence in Technology (AJCT), 3(1).
[11]. Huang, F. J., Zhou, Z., Zhang, H. J., & Chen, T. (2000,
March). Pose invariant face recognition. In Proceedings
Fourth IEEE International Conference on Automatic Face
and Gesture Recognition (Cat. No. PR00580) (pp. 245-250). IEEE. https://doi.org/10.1109/AFGR.2000.840642
[12]. Huang, J., Blanz, V., & Heisele, B. (2002, August).
Face recognition using component-based SVM
classification and morphable models. In International
Workshop on Support Vector Machines (pp. 334-341).
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45665-1_26
[13]. Jazouli, M., Majda, A., & Zarghili, A. (2017, April). A $
P recognizer for automatic facial emotion recognition
using Kinect sensor. In 2017 Intelligent Systems and
Computer Vision (ISCV) (pp. 1-5). IEEE. https://doi.org/10.1109/ISACV.2017.8054955
[14]. Jia, H., & Martinez, A. M. (2008, September). Face
recognition with occlusions in the training and testing sets.
In 2008 8th IEEE International Conference on Automatic
Face & Gesture Recognition (pp. 1-6). IEEE. https://doi.org/10.1109/AFGR.2008.4813410
[15]. Jin, Y., & Ruan, Q. Q. (2009). Face recognition using gabor-based improved supervised locality preserving
projections. Computing and Informatics, 28(1), 81-95.
[16]. Kar, A., Bhattacharjee, D., Nasipuri, M., Basu, D. K., &
Kundu, M. (2009). Classification of high-energized Gabor
responses using bayesian PCA for human face
recognition. International Journal of Recent Trends in
Engineering, 2(2), 106.
[17]. Kong, R., & Zhang, B. (2011). A new face recognition
method based on fast least squares support vector
machine. Physics Procedia, 22, 616-621. https://doi.org/10.1016/j.phpro.2011.11.095
[18]. Le, T. H., & Bui, L. (2011). Face recognition based on
SVM and 2DPCA. arXiv preprint arXiv:1110.5404. https://doi.org/10.48550/arXiv.1110.5404
[19]. Li, Y., Gong, S., Sherrah, J., & Liddell, H. (2000,
September). Multi-view face detection using support
vector machines and eigenspace modelling. In
KES'2000. Fourth International Conference on
Knowledge-Based Intelligent Engineering Systems and
Allied Technologies. Proceedings (Cat. No. 00TH8516), 1,
241-244. IEEE. https://doi.org/10.1109/KES.2000.885802
[20]. Liu, X., & Chen, T. (2003, June). Video-based face
recognition using adaptive hidden markov models. In
Proceedings of the 2003 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition (CVPR'03), 1, 340–345. https://doi.org/10.1109/CVPR.2003.1211373
[21]. Miarnaeimi, H., & Davari, P. (2008). A new fast and
efficient HMM-based face recognition system using a 7-
state HMM along with SVD coefficients. Iranian Journal of
Electrical and Electronic Engineering, 4(1), 46-57.
[22]. Ming, Y., Ruan, Q., & Wang, X. (2012). Efficient 3d
face recognition with Gabor patched spectral regression.
Computing and Informatics, 31(4), 779-803.
[23]. Nandini, M., Bhargavi, P., & Sekhar, G. R. (2013).
Face recognition using neural networks. International
Journal of Scientific and Research Publications, 3(3), 1-5.
[24]. Nefian, A. V., & Hayes, M. H. (1998, May). Hidden
Markov models for face recognition. In Proceedings of
the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP'98 (Cat. No. 98CH36181), 5, 2721-2724. https://doi.org/10.1109/ICASSP.1998.678085
[25]. Prakash, N. K. (2010). Face detection using neural
network. International Journal of Computer Applications,
1(14), 36–39. https://doi.org/10.5120/345-524
[26]. Raja, A. S., & JosephRaj, V. (2012). Neural network
based supervised self-organizing maps for face
recognition. International Journal on Soft Computing,
3(3), 31-39. https://doi.org/10.5121/ijsc.2012.3303
[27]. Shah, J. H., Sharif, M., Raza, M., & Azeem, A. (2014).
Face recognition across pose variation and the 3S
problem. Turkish Journal of Electrical Engineering and
Computer Sciences, 22(6), 1423-1436. https://doi.org/10.3906/elk-1108-70
[28]. Sharif, M., Ali, M. A., Raza, M., & Mohsin, S. (2015).
Face recognition using edge information and DCT. Sindh
University Research Journal-SURJ (Science Series), 43(2),
209- 214.
[29]. Sharif, M., Anis, S., Raza, M., & Mohsin, S. (2012).
Enhanced SVD based face recognition. Journal of
Applied Computer Science & Mathematics, (12), 49-53.
[30]. Sharif, M., Ayub, K., Sattar, D., & Raza, M. (2012).
Real time face detection. Sindh University Research
Journal-SURJ (Science Series), 44(4), 597- 600.
[31]. Sharif, M., Mohsin, S., Hanan, R. A., Javed, M. Y., &
Raza, M. (2011). 3d face recognition using horizontal and
vertical marked strips. Sindh University Research Journal-SURJ (Science Series), 43(1), 57-62.
[32]. Sharif, M., Mohsin, S., Jamal, M. J., & Raza, M. (2010,
July). Illumination normalization preprocessing for face
recognition. In 2010 the 2nd Conference on Environmental
Science and Information Application Technology, 2, 44-47. IEEE. https://doi.org/10.1109/ESIAT. 2010.5567274
[33]. Sharif, M., Naz, F., Yasmin, M., Shahid, M. A., &
Rehman, A. (2017). Face recognition: A survey. Journal of
Engineering Science & Technology Review, 10(2), 166-177.
[34]. Tarrés, F., Rama, A., & Torres, L. (2005, June). A novel
method for face recognition under partial occlusion or
facial expression variations. In Proceedings of the 47th International Symposium (ELMAR-2005) (pp. 163-166).
[35]. Vyas, R. A., & Shah, S. M. (2017). Comparision of PCA
and LDA techniques for face recognition feature based
extraction with accuracy enhancement. International
Research Journal of Engineering and Technology (IRJET),
4(6), 3332-3336.
[36]. Wang, J., & Yang, H. (2008, May). Face detection
based on template matching and 2DPCA algorithm. In
2008 Congress on Image and Signal Processing, 4, 575-579. IEEE. https://doi.org/10.1109/CISP.2008.270
[37]. Wei, X., Li, C., & Hu, Y. (2012). Robustface
recognition under varying illumination and occlusion
considering structured sparsity. 2012 International
Conference on Digital Image Computing Techniques
and Applications (DICTA). https://doi.org/10.1109/DICTA.2012.6411704
[38]. Wright, J., & Hua, G. (2009, June). Implicit elastic
matching with random projections for pose-variant face
recognition. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1502-1509). IEEE.
https://doi.org/10.1109/CVPR.2009.5206786
[39]. Wu, C., Wang, S., & Ji, Q. (2015, May). Multi-instance
hidden markov model for facial expression recognition. In
2015 11th IEEE International Conference and Workshops
on Automatic Face and Gesture Recognition (FG), 1, 1-6.
IEEE.
[40]. Xie, J. (2009). Face recognition based on Curvelet
transform and LS-SVM. In Proceedings of the 2009
International Symposium on Information Processing
(ISIP'09) (pp. 140-143). Academy Publisher.
[41]. Yi, D., Lei, Z., & Li, S. Z. (2015, May). Shared
representation learning for heterogenous face
recognition. In 2015 11th IEEE International Conference
and Workshops on Automatic Face and Gesture
Recognition (FG), 1, 1-7. IEEE. https://doi.org/10.1109/FG.2015.7163093
[42]. Zhang, W., Huang, D., Wang, Y., & Chen, L. (2012,
December). 3D aided face recognition across pose
variations. In Chinese Conference on Biometric
Recognition (pp. 58-66). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-35136-5_8
[43]. Zhang, X., & Gao, Y. (2009). Face recognition across
pose: A review. Pattern Recognition, 42(11), 2876-2896.
https://doi.org/10.1016/j.patcog.2009.04.017
[44]. Zhang, X., & Zou, J. (2008, December). Face
recognition based on sub-image feature extraction and
LS-SVM. In 2008 International Conference on Computer
Science and Software Engineering, 1, 772-775. IEEE.
https://doi.org/10.1109/CSSE.2008.1088
[45]. Zhao, W., & Chellappa, R. (2000). Illuminationsensitive
face recognition using symmetric shape-from-shading. Proceedings IEEE Conference on Computer
Vision and Pattern Recognition. CVPR 2000 (Cat.
No.PR00662). https://doi.org/10.1109/CVPR.2000.855831
[46]. Zhou, Z., Wagner, A., Mobahi, H., Wright, J., & Ma, Y.
(2009, September). Face recognition with contiguous
occlusion using markov random fields. In 2009 IEEE 12th
International Conference on Computer Vision (pp. 1050-1057). IEEE. https://doi.org/10.1109/ICCV.2009.5459383