References
[1]. Balchin, M. J., & Eastham, J. F. (1997). Model for
transients in linear induction machines. IEEE Transactions
on Magnetics, 33(5), 4191-4193. https://doi.org/10.1109/20.619706
[2]. Cao, R., Lu, M., Jiang, N., & Cheng, M. (2019).
Comparison between linear induction motor and linear flux-switching permanent-magnet motor for railway
transportation. IEEE Transactions on Industrial Electronics,
66(12), 9394-9405. https://doi.org/10.1109/TIE.2019.2892676
[3]. da Silva, E. F., dos Santos, C. C., & Nerys, J. W. L. (2004,
March). Field oriented control of linear induction motor
taking into account end-effects. In the 8th IEEE
International Workshop on Advanced Motion Control,
2004. AMC'04. (pp. 689-694). IEEE. https://doi.org/10.1109/AMC.2004.1297952
[4]. Di, J., Fan, Y., & Liu, Y. J. (2015, November). Equivalent
parameter estimation of a single-sided linear induction
motor based on electromagnetic field induced by
current FFT-wave. In 2015 IEEE International Conference
on Applied Superconductivity and Electromagnetic
Devices (ASEMD) (pp. 89-91). IEEE. https://doi.org/10.1109/ASEMD.2015.7453480
[5]. Duncan, J. (1983, January). Linear induction motorequivalent-
circuit model. In IEE Proceedings B: Electric
Power Applications (Vol. 130, No. 1, pp. 51-57).
[6]. Durgasukumar, G., & Pathak, M. K. (2012). Neurofuzzy-
based torque ripple reduction and performance
improvement of VSI fed induction motor drive.
International Journal of Bio-Inspired Computation, 4(2),
63-72. https://doi.org/10.1504/IJBIC.2012.047174
[7]. Faiz, J., & Jagari, H. (2000). Accurate modeling of
single-sided linear induction motor considers end effect
and equivalent thickness. IEEE Transactions on Magnetics,
36(5), 3785-3790. https://doi.org/10.1109/20.908365
[8]. Gang, L., Zhiming, L., & Shouguang, S. (2016).
Analysis of torques in single-side linear induction motor
with transverse asymmetry for linear metro [J]. IEEE
Transactions on Energy Conversion, 31(1), 165-173.
https://doi.org/10.1109/TEC.2015.2470561
[9]. Hamedani, P., & Shoulaie, A. (2013, February).
Indirect field oriented control of linear induction motors
considering the end effects supplied from a cascaded Hbridge
inverter with multiband hystersis modulation. In 4th
Annual International Power Electronics, Drive Systems
and Technologies Conference (pp. 13-19). IEEE.
[10]. Li, D., Li, W., Fang, J., Zhang, X., & Cao, J. (2013). Performance evaluation of a low-speed single-side HTS
linear induction motor used for subway system. IEEE
Transactions on Magnetics, 50(5), 1-9. https://doi.org/10.1109/TMAG.2013.2291543
[11]. Li, J. Q., Li, W. L., Deng, G. Q., & Ming, Z. (2016).
Continuous-behavior and discrete-time combined
control for linear induction motor-based urban rail transit.
IEEE Transactions on Magnetics, 52(7), 1-4. https://doi.org/10.1109/TMAG.2016.2533439
[12]. Lim, J., Jeong, J. H., Kim, C. H., Ha, C. W., & Park, D. Y.
(2017). Analysis and experimental evaluation of normal
force of linear induction motor for maglev vehicle. IEEE
Transactions on Magnetics, 53(11), 1-4.
https://doi.org/10.1109/TMAG.2017.2699694
[13]. Lin, F. J., Shen, P. H., & Hsu, S. P. (2002). Adaptive
backstepping sliding mode control for linear induction
motor drive. IEE Proceedings-Electric Power Applications,
149(3), 184-194.
[14]. Lipa, T. A., & Nondahl, T. A. (1979). Pole-by-pole dq
model of a linear induction machine. IEEE Transactions on
Power Apparatus and Systems, 2, 629-642.
https://doi.org/10.1109/TPAS.1979.319448
[15]. Mirsalim, M., Doroudi, A., & Moghani, J. S. (2002).
Obtaining the operating characteristics of linear
induction motors: A new approach. IEEE Transactions on
Magnetics, 38(2), 1365-1370. https://doi.org/10.1109/20.996026
[16]. Motlagh, S., & Fazel, S. S. (2012, February). Indirect
vector control of linear induction motor considering end
effect. In 2012 3rd Power Electronics and Drive Systems
Technology (PEDSTC) (pp. 193-198). IEEE. https://doi.org/10.1109/PEDSTC.2012.6183324
[17]. Pucci, M. (2013). State space-vector model of linear
induction motors. IEEE Transactions on Industry
Applications, 50(1), 195-207. https://doi.org/10.1109/TIA.2013.2266351
[18]. Qiwei, X., Shumei, C., Qianfan, Z., Liwei, S., & Li, X. (2014, July). Research on a new accurate thrust control
strategy for linear induction motor. In 2014 17th
International Symposium on Electromagnetic Launch
Technology (pp. 1-5). IEEE. https://doi.org/10.1109/EML.2014.6920651
[19]. Ravanji, M. H., & Nasiri-Gheidari, Z. (2015). Design
optimization of a ladder secondary single-sided linear
induction motor for improved performance. IEEE
Transactions on Energy Conversion, 30(4), 1595-1603.
https://doi.org/10.1109/TEC.2015.2461434.
[20]. Seo, H., Lim, J., Choe, G. H., Choi, J. Y., & Jeong, J. H.
(2018). Algorithm of linear induction motor control for low
normal force of magnetic levitation train propulsion
system. IEEE Transactions on Magnetics, 54(11), 1-4.
https://doi.org/10.1109/TMAG.2018.2842222
[21]. Wang, K., Li, Y., Ge, Q., & Shi, L. (2018). An improved
indirect field-oriented control scheme for linear induction
motor traction drives. IEEE Transactions on Industrial
Electronics, 65(12), 9928-9937. https://doi.org/10.1109/TIE.2018.2815940
[22]. Xu, W., Zhu, J. G., Zhang, Y., Li, Z., Li, Y., Wang, Y., & Li,
Y. (2010). Equivalent circuits for single-sided linear
induction motors. IEEE Transactions on Industry
Applications, 46(6), 2410-2423.
[23]. Yoshida, K. (1981, September). New transfer-matrix
theory of linear induction machines, taking into account
longitudinal and transverse ferromagnetic end effects. In
IEE Proceedings B (Electric Power Applications) (Vol. 128,
No. 5, pp. 225-236). IET Digital Library. https://doi.org/10.1049/ip-b.1981.0038
[24]. Zhao, J., Yang, Z., Liu, J., & Zheng, T. Q. (2008, June).
Indirect vector control scheme for linear induction motors
using single neuron PI controllers with and without the end
effects. In 2008 7th World Congress on Intelligent Control
and Automation (pp. 5263-5267). IEEE. https://doi.org/10.1109/WCICA.2008.4593785