References
[1]. Bannink, R., Broeren, S., van de Looij–Jansen, P. M.,
de Waart, F. G., &Raat, H. (2014). Cyber and traditional
bullying victimization as a risk factor for mental health
problems and suicidal ideation in adolescents. PloS One,
9(4), e94026. https://doi.org/10.1371/journal.pone.0094026
[2]. Barbosa, L., & Feng, J. (2010, August). Robust
sentiment detection on twitter from biased and noisy
data. In Coling 2010: Posters, (pp. 36-44).
[3]. Bifet, A., & Frank, E. (2010, October). Sentiment
knowledge discovery in twitter streaming data. In
International Conference on Discovery Science, (pp. 1-15). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16184-1_1
[4]. Bonanno, R. A., & Hymel, S. (2013). Cyber bullying and
internalizing difficulties: Above and beyond the impact of
traditional forms of bullying. Journal of Youth and
Adolescence, 42(5), 685-697. https://doi.org/10.1007/s10964-013-9937-1
[5]. Bowker, J. (1997). The Oxford Dictionary of World
Religions. Oxford University Press, USA.
[6]. Davidson, T., Warmsley, D., Macy, M., & Weber, I.
(2017, May). Automated hate speech detection and the
problem of offensive language. In Proceedings of the
International AAAI Conference on Web and Social
Media, 11(1), 512-515.
[7]. Gamallo, P., & Garcia, M. (2014, August). Citius: A
naive-bayes strategy for sentiment analysis on english
tweets. In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014), (pp. 171-175).
[8]. Gaydhani, A., Doma, V., Kendre, S., & Bhagwat, L.
(2018). Detecting hate speech and offensive language
on twitter using machine learning: An n-gram and TFIDF
based approach. arXiv preprint arXiv:1809.08651.
https://doi.org/10.48550/arXiv.1809.08651
[9]. Go, A., Bhayani, R., & Huang, L. (2009). Twitter
sentiment classification using distant supervision. CS224N
Project Report, Stanford, 1(12), 2009.
[10]. Kumar, R., Ojha, A. K., Malmasi, S., & Zampieri, M.
(2018, August). Benchmarking aggression identification
in social media. In Proceedings of the First Workshop on
Trolling, Aggression and Cyberbullying (TRAC-2018), (pp.
1-11).
[11]. Kumar, R., Ojha, A. K., Malmasi, S., & Zampieri, M.
(2020, May). Evaluating aggression identification in social
media. In Proceedings of the Second Workshop on
Trolling, Aggression and Cyberbullying, (pp. 1-5).
[12]. Lee, Y., Yoon, S., & Jung, K. (2018). Comparative
studies of detecting abusive language on twitter. arXiv
preprint arXiv:1808.10245. https://doi.org/10.48550/arXiv.1808.10245
[13]. Malmasi, S., &Zampieri, M. (2017). Detecting hate
speech in social media. In Proceedings of Recent
Advances in Natural Language Processing (RANLP), (pp. 467-472). https://doi.org/10.48550/arXiv.1712.06427
[14]. Malmasi, S., & Zampieri, M. (2018). Challenges in
discriminating profanity from hate speech. Journal of
Experimental & Theoretical Artificial Intelligence, 30(2),
187-202. https://doi.org/10.1080/0952813X.2017.1409284
[15]. Mandl, T., Modha, S., Majumder, P., Patel, D., Dave,
M., Mandlia, C., & Patel, A. (2019, December). Overview
of the hasoc track at fire 2019: Hate speech and offensive
content identification in indo-european languages. In
Proceedings of the 11th Forum for Information Retrieval
Evaluation, (pp. 14-17). https://doi.org/10.1145/3368567.3368584
[16]. Mubarak, H., Darwish, K., & Magdy, W. (2017,
August). Abusive language detection on Arabic social
media. In Proceedings of the First Workshop on Abusive
Language Online, (pp. 52-56). https://doi.org/10.18653/v1/W17-3008
[17]. Mubarak, H., Rashed, A., Darwish, K., Samih, Y., &
Abdelali, A. (2020). Arabic offensive language on twitter:
Analysis and experiments. arXiv preprint arXiv:2004.02192. https://doi.org/10.48550/arXiv.2004.02192
[18]. Pak, A., & Paroubek, P. (2010, May). Twitter as a
corpus for sentiment analysis and opinion mining. In
Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC'10), (pp.1320-1326).
[19]. Pitenis, Z., Zampieri, M., & Ranasinghe, T. (2020).
Offensive language identification in Greek. In
Proceedings of the 12th Conference on Language
Resources and Evaluation (LREC 2020), (pp. 5113–5119).
[20]. Rani, K.,& Satvika. (2016). Text categorization on
multiple languages based on classification technique.
International Journal of Computer Science and
Information Technologies, 7(3), 1578-1581.
[21]. Rosa, H., Pereira, N., Ribeiro, R., Ferreira, P. C.,
Carvalho, J. P., Oliveira, S., ...& Trancoso, I. (2019).
Automatic cyberbullying detection: A systematic review.
Computers in Human Behavior, 93, 333-345. https://doi.org/10.1016/j.chb.2018.12.021
[22]. Turney, P. D. (2002). Thumbs up or thumbs down?
Semantic orientation applied to unsuper vised
classification of reviews. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics,
(pp. 417–424). https://doi.org/10.48550/arXiv.cs/0212032
[23]. Waseem, Z., & Hovy, D. (2016, June). Hateful
symbols or hateful people? Predictive features for hate
speech detection on twitter. In Proceedings of the NAACL
Student Research Workshop, (pp. 88-93).
[24]. Watanabe, H., Bouazizi, M., & Ohtsuki, T. (2018).
Hate speech on twitter: A pragmatic approach to collect
hateful and offensive expressions and perform hate
speech detection. IEEE Access, 6, 13825-13835. https://doi.org/10.1109/ACCESS.2018.2806394
[25]. Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S.,
Farra, N., & Kumar, R. (2019). Semeval-2019 task 6:
Identifying and categorizing offensive language in social media (offenseval). arXiv preprint arXiv:1903.08983.
https://doi.org/10.48550/ arXiv.1903.08983
[26]. Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P.,
Karadzhov, G., Mubarak, H., ...&Çöltekin, Ç. (2020).
SemEval-2020 task 12: Multilingual offensive language
identification in social media (OffensEval 2020). arXiv
preprint arXiv:2006.07235. https://doi.org/10.48550/arXiv.2006.07235
[27]. Zhao, J., Liu, K., & Wang, G. (2008, October). Adding
redundant features for CRFs-based sentence sentiment
classification. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing, (pp. 117-126).