References
[1].
Ahuja, R., Chug, A., Kohli, S., Gupta, S., & Ahuja, P.
(2019). The impact of features extraction on the sentiment
analysis. Procedia Computer Science, 152, 341-348.
[4]. Baer, M. (2010). Cyberstalking and the internet
landscape we have constructed. Virginia Journal of Law
& Technology, 15(154).
[6]. Cristianini, N., & Shawe-Taylor, J. (2000). An
Introduction to Support Vector Machines and other
Kernel-Based Learning Methods. Cambridge university
press.
[8].
Davidson, T., Warmsley, D., Macy, M., & Weber, I.
(2017, May). Automated hate speech detection and the
problem of offensive language. In Proceedings of the
International AAAI Conference on Web and Social
Media, 11(1), 512-515.
[11]. Forman, G. (2003). An extensive empirical study of
feature selection metrics for text classification. The
Journal of Machine Learning Research, 3, 1289-1305.
[12].
Frommholz, I., Al-Khateeb, H. M., Potthast, M.,
Ghasem, Z., Shukla, M., & Short, E. (2016). On textual
analysis and machine learning for cyberstalking
detection. Datenbank-Spektrum, 16(2), 127-135.
[14]. Gautam, A. K., & Bansal, A. (2021). A machine
learning framework for detection and documentation of
cyberstalking on non-spam email. The Journal of Oriental
Research Madras, XCII-V, 41-50.
[15]. Gautam, A. K., & Bansal, A. (2022a). Performance
analysis of supervised machine learning techniques for
cyberstalking detection in social media. Journal of
Theoretical and Applied Information Technology, 100(2),
449- 461.
[19]. Ghasem, Z., Frommholz, I., & Maple, C. (2015).
Machine learning solutions for controlling cyberbullying
and cyberstalking. Journal of Information Security
Research, 6(2), 55-64.
[20]. He, X., Cai, D., & Niyogi, P. (2005). Laplacian score
for feature selection. Advances in Neural Information
Processing Systems, 507- 514.
[21]. Kadhim, A. I. (2018). An evaluation of preprocessing
techniques for text classification. International Journal of
Computer Science and Information Security (IJCSIS),
16(6), 22-32.
[22].
Lal, S., Tiwari, L., Ranjan, R., Verma, A., Sardana, N.,
& Mourya, R. (2020). Analysis and classification of crime
tweets. Procedia Computer Science, 167, 1911-1919.
[25]. Mori, T. (2002). Information gain ratio as term weight:
the case of summarization of IR results. In Coling 2002: The
19th International Conference on Computational
Linguistics, 688-694.
[31].
Raj, C., Agarwal, A., Bharathy, G., Narayan, B., &
Prasad, M. (2021). Cyberbullying detection: Hybrid
models based on machine learning and natural
language processing techniques. Electronics, 10(22), 2810.
[38]. Tang, J., Alelyani, S., & Liu, H. (2014). Feature
selection for classification: A review. Data Classification:
Algorithms and Applications, 37-64.
[39]. Tarmizi, N., Saee, S., & Ibrahim, D. H. A. (2020).
Detecting the usage of vulgar words in cyberbully
activities from Twitter. International Journal on Advanced
Science, Engineering and Information Technology, 10(3),
1117-1122.
[42]. Vijayarani, S., Ilamathi, M. J., & Nithya, M. (2015).
Preprocessing techniques for text mining-An overview.
International Journal of Computer Science &
Communication Networks, 5(1), 7-16.
[44].
Wang, K., Cui, Y., Hu, J., Zhang, Y., Zhao, W., & Feng, L. (2020a). Cyberbullying detection, based on the fasttext
and word similarity schemes. ACM Transactions on Asian
and Low-Resource Language Information Processing
(TALLIP), 20(1), 1-15.
[45]. Xu, Y., Jones, G. J., Li, J., Wang, B., & Sun, C. (2007). A
study on mutual information-based feature selection for
text categorization. Journal of Computational
Information Systems, 3(3), 1007-1012.
[46]. Yang, Y., & Pedersen, J. O. (1997, July). A
comparative study on feature selection in text
categorization. In Proceedings of the Fourteenth
International Conference on Machine Learning (pp. 412-420).
[47].
Yuvaraj, N., Srihari, K., Dhiman, G., Somasundaram,
K., Sharma, A., Rajeskannan, S. M. G. S. M. A., ... &
Masud, M. (2021). Nature-inspired-based approach for
automated cyberbullying classification on multimedia
social networking. Mathematical Problems in
Engineering, 2021.