References
[1]. Bouchrika, I. (2018). A survey of using biometrics for
smart visual surveillance: Gait recognition. In Surveillance
in Action (pp. 3-23). Springer, Cham. https://doi.org/10.1007/978-3-319-68533-5_1
[2]. Chai, Y., Ren, J., Han, W., & Li, H. (2011). Human gait
recognition: approaches, datasets and challenges. 4th
International Conference on Imaging for Crime
Detection and Prevention 2011, https://doi.org/10.1049/ic.2011.0100
[3]. Collins, R. T., Gross, R., & Shi, J. (2002, May).
Silhouette-based human identification from body shape and gait. In Proceedings of Fifth IEEE International
Conference on Automatic Face Gesture Recognition
(pp. 366-371). IEEE. https://doi.org/10.1109/AFGR.2002.1004181
[4]. Connor, P., & Ross, A. (2018). Biometric recognition by
gait: A survey of modalities and features. Computer Vision
and Image Understanding, 167, 1-27. https://doi.org/10.1016/j.cviu.2018.01.007
[5]. Han, J., & Bhanu, B. (2006). Individual recognition
using gait energy image. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(2), 316-322.
https://doi.org/10.1109/TPAMI.2006.38
[6]. Isaac, E. R., Elias, S., Rajagopalan, S., &
Easwarakumar, K. S. (2017). View-invariant gait
recognition through genetic template segmentation.
IEEE Signal Processing Letters, 24(8), 1188-1192.
https://doi.org/10.1109/LSP. 2017.2715179
[7]. Kalsoom, A., Maqsood, M., Ghazanfar, M. A., Aadil, F.,
& Rho, S. (2018). A dimensionality reduction-based
efficient software fault prediction using Fisher linear
discriminant analysis (FLDA). The Journal of Supercomputing,
74(9), 4568-4602. https://doi.org/ 10.1007/s11227-018-2326-5
[8]. Lishani, A. O., Boubchir, L., & Bouridane, A. (2014,
December). Haralick features for GEI-based human gait
recognition. In 2014 26th International Conference on
Microelectronics (ICM) (pp. 36-39). IEEE. https://doi.org/10.1109/ICM.2014.7071800
[9]. Lishani, A. O., Boubchir, L., Khalifa, E., & Bouridane, A.
(2019). Human gait recognition using GEI-based local
multi-scale feature descriptors. Multimedia Tools and
Applications, 78(5), 5715-5730. https://doi.org/10.1007/s11042-018-5752-8
[10]. Nithyakani, P., Shanthini, A., & Ponsam, G. (2019,
February). Human gait recognition using deep
convolutional neural network. In 2019 3rd International
Conference on Computing and Communications
Technologies (ICCCT) (pp. 208-211). IEEE. https://doi.org/10.1109/ICCCT2.2019.8824836
[11]. Popade, M., & Thengade, A. (2016). Human gait
recognition based on gait energy image. International Journal of Science and Research (IJSR), 5(11), 1393-1398.
[12]. Prakash, C., Kumar, R., & Mittal, N. (2018). Recent
developments in human gait research: parameters,
approaches, applications, machine learning
techniques, datasets and challenges. Artificial
Intelligence Review, 49(1), 1-40. https://doi.org/10.1007/s10462-016-9514-6
[13]. Rida, I., Bouridane, A., Marcialis, G. L., & Tuveri, P.
(2015, September). Improved human gait recognition. In
International Conference on Image Analysis and
Processing (pp. 119-129). Springer, Cham. https://doi.org/10.1007/978-3-319-23234-8_12
[14]. Singh, J. P., Jain, S., Arora, S., & Singh, U. P. (2018).
Vision-based gait recognition: A survey. IEEE Access, 6,
70497-70527. https://doi.org/10.1109/ACCESS.2018.2879896
[15]. Singh, J. P., Jain, S., Arora, S., & Singh, U. P. (2021). A survey of behavioral biometric gait recognition: Current
success and future perspectives. Archives of
Computational Methods in Engineering, 28(1), 107-148.
https://doi.org/10.1007/s11831-019-09375-3
[16]. Wan, C., Wang, L., & Phoha, V. V. (Eds.). (2018). A
survey on gait recognition. ACM Computing Surveys
(CSUR), 51(5), 1-35. https://doi.org/10.1145/3230633
[17]. Yeoh, T., Aguirre, H. E., & Tanaka, K. (2016, October).
Clothing-invariant gait recognition using convolutional
neural network. In 2016 International Symposium on
Intelligent Signal Processing and Communication
Systems (ISPACS) (pp. 1-5). IEEE. https://doi.org/10.1109/ISPACS.2016.7824728
[18]. Zhang, Y., Huang, Y., Wang, L., & Yu, S. (2019). A
comprehensive study on gait biometrics using a joint
CNN-based method. Pattern Recognition, 93, 228-236.
https://doi.org/10.1016/j.patcog.2019.04.023