References
[1]. Abbasi, A. A., & Younis, M. (2007). A survey on
clustering algorithms for wireless sensor networks.
Computer Communications, 30(14-15), 2826-2841.
https://doi.org/10.1016/j.comcom.2007.05.024
[2]. Anastasi, G., Falchi, A., Passarella, A., Conti, M., &
Gregori, E. (2004, October). Performance measurements
of motes sensor networks. In Proceedings of the 7th ACM
International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, (pp. 174-181).
https://doi.org/10.1145/1023663.1023695
[3]. Babu, M. S. P., & Rao, N. T. (2010). Implementation of
artificial bee colony (ABC) algorithm on garlic expert
advisory system. International Journal of Computer
Science and Research, 1(1), 69-74.
[4]. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999).
Swarm Intelligence: From Natural to Artificial Intelligence.
Oxford University Press.
[5]. Crossbow Technology, Inc. (n.d.). MICAz Wireless
Measurement System. http://courses.ece.ubc.ca/494/files/MICAz_Datasheet.pdf
[6]. Cui, L., Li, G., Zhu, Z., Lin, Q., Wen, Z., Lu, N., ... & Chen,
J. (2017). A novel artificial bee colony algorithm with an
adaptive population size for numerical function
optimization. Information Sciences, 414, 53-67. https://doi.org/10.1016/j.ins.2017.05.044
[7]. Deng, X. (2013). An enhanced artificial bee colony
approach for customer segmentation in mobile ecommerce
environment. International Journal of
Advancements in Computing Technology, 5(1), 139-148.
[8]. Dorigo, M., & Di Caro, G. (1999, July). Ant colony
optimization: a new meta-heuristic. In Proceedings of the
1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), 2, 1470-1477. https://doi.org/10.1109/CEC.1999.782657
[9]. Fister, I., Fister, I. J., Brest, J., & Žumer, V. (2012, June).
Memetic artificial bee colony algorithm for large-scale
global optimization. In 2012, IEEE Congress on
Evolutionary Computation, (pp. 1-8). IEEE. https://doi.org/10.1109/CEC.2012.6252938
[10]. Gao, W. F., Liu, S. Y., & Huang, L. L. (2014). Enhancing
artificial bee colony algorithm using more informationbased
search equations. Information Sciences, 270, 112-
133. https://doi.org/10.1016/j.ins.2014.02.104
[11]. Gao, W., & Liu, S. (2011). Improved artificial bee
colony algorithm for global optimization. Information
Processing Letters, 111(17), 871-882. https://doi.org/10.1016/j.ipl.2011.06.002
[12]. Gherbi, C., Aliouat, Z., & Benmohammed, M. (2016).
An adaptive clustering approach to dynamic load
balancing and energy efficiency in wireless sensor
networks. Energy, 114, 647-662. https://doi.org/10.1016/j.energy.2016.08.012
[13]. Goldsmith, A. J., & Wicker, S. B. (2002). Design
challenges for energy-constrained ad hoc wireless
networks. IEEE Wireless Communications, 9(4), 8-27.
https://doi.org/10.1109/MWC.2002.1028874
[14]. Heinzelman, W. B., Chandrakasan, A. P., &
Balakrishnan, H. (2002). An application-specific protocol
architecture for wireless microsensor networks. IEEE
Transactions on Wireless Communications, 1(4), 660-670.
https://doi.org/10.1109/TWC.2002.804190
[15]. Kang, F., Li, J., & Xu, Q. (2009). Structural inverse
analysis by hybrid simplex artificial bee colony algorithms.
Computers & Structures, 87(13-14), 861-870. https://doi.org/10.1016/j.compstruc.2009.03.001
[16]. Karaboga, D. (2005). An idea based on honey bee
swarm for numerical optimization. Retrieved from https://abc.erciyes.edu.tr/pub/tr06_2005.pdf
[17]. Karaboga, D., & Akay, B. (2009). A comparative
study of artificial bee colony algorithm. Applied Mathematics and Computation, 214(1), 108-132. https://doi.org/10.1016/j.amc.2009.03.090
[18]. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm
optimization. In IEEE International Conference on Neural
Networks, 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
[19]. Latiff, N. A., Tsimenidis, C. C., & Sharif, B. S. (2007,
October). Performance comparison of optimization
algorithms for clustering in wireless sensor networks. In
2007, IEEE International Conference on Mobile Adhoc
and Sensor Systems, (pp. 1-4). IEEE. https://doi.org/10.1109/MOBHOC.2007.4428638
[20]. Liang, Y., & Yu, H. (2005, December). PSO-based
energy efficient gathering in sensor networks. In
International Conference on Mobile Ad-Hoc and Sensor
Networks, (pp. 362-369). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11599463_36
[21]. Luo, J., Wang, Q., & Xiao, X. (2013). A modified
artificial bee colony algorithm based on convergeonlookers
approach for global optimization. Applied
Mathematics and Computation, 219(20), 10253-10262.
https://doi.org/10.1016/j.amc.2013.04.001
[22]. Manjeshwar, A., Zeng, Q. A., & Agrawal, D. P. (2002).
An analytical model for information retrieval in wireless
sensor networks using enhanced APTEEN protocol. IEEE
Transactions on Parallel and Distributed Systems, 13(12),
1290-1302. https://doi.org/10.1109/TPDS.2002.1158266
[23]. Ozturk, C., & Karaboga, D. (2011, June). Hybrid
artificial bee colony algorithm for neural network training.
In 2011, IEEE Congress of Evolutionary Computation
(CEC), (pp. 84-88). IEEE. https://doi.org/10.1109/CEC.2011.5949602
[24]. Prabha, M. S., & Vijayarani, S. (2011). Association
rule hiding using artificial bee colony algorithm.
International Journal of Computer Applications, 33(2),
41-47.
[25]. Qing, L., Zhi, T., Yuejun, Y., & Yue, L. (2009). Localized
Structural Health Monitoring Using Energy-Efficient Wireless
Sensor Networks. IEEE Sensors Journal, 9(11), 1596–1604.
https://doi.org/10.1109/JSEN.2009.2019318
[26]. Sharma, T. K., & Pant, M. (2013). Enhancing the food
locations in an artificial bee colony algorithm. Soft
Computing, 17(10), 1939-1965. https://doi.org/10.1007/s00500-013-1029-3
[27]. Song, X., Yan, Q., & Zhao, M. (2017). An adaptive
artificial bee colony algorithm based on objective
function value information. Applied Soft Computing, 55,
384-401. https://doi.org/10.1016/j.asoc.2017.01.031
[28]. Transpire Online. (2019). Artificial Bee Colony (ABC)
Algorithm: A Novel Method Motivated From the Behavior
of Bees for Optimal Solution. Retrieved from https://transpireonline.blog/2019/08/02/artificial-bee-colonyabc-algorithm-a-novel-method-motivated-from-thebehavior-of-bees-for-optimal-solution/.
[29]. Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH:
Power-efficient and adaptive clustering hierarchy
protocol for wireless sensor networks. Computer
Communications, 30(14-15), 2842-2852. https://doi.org/10.1016/j.comcom.2007.05.034
[30]. Zhong, Y., Lin, J., Ning, J., & Lin, X. (2011, July). Hybrid
artificial bee colony algorithm with chemotaxis behavior
of bacterial foraging optimization algorithm. In 2011,
Seventh International Conference on Natural Computation,
2, 1171-1174. https://doi.org/10.1109/ICNC.2011.6022147