References
[1]. Abdou, A. S., & Darwish, N. R. (2018). Early prediction
of software defect using ensemble learning: A
comparative study. International Journal of Computer
Applications, 179(46), 29-40.
[2]. Alazba, A., & Aljamaan, H. (2021). Code smell
detection using feature selection and stacking
ensemble: an empirical investigation. Information and
Software Technology, 138, 106648. https://doi.org/10.1016/J.INFSOF.2021.106648
[3]. Aljamaan, H. (2021). Voting heterogeneous
ensemble for code smell detection. Proceedings – 20th
IEEE International Conference on Machine Learning and
Applications, 897–902. https://doi.org/10.1109/ICMLA52953.2021.00148
[4]. Arcelli Fontana, F., Mäntylä, M. V., Zanoni, M., &
Marino, A. (2016). Comparing and experimenting machine learning techniques for code smell detection.
Empirical Software Engineering, 21(3), 1143-1191.
https://doi.org/10.1007/S10664-015-9378-4/TABLES/24
[5]. Catolino, G., Palomba, F., Fontana, F. A., De Lucia, A.,
Zaidman, A., & Ferrucci, F. (2020). Improving change
prediction models with code smell-related information.
Empirical Software Engineering, 25(1), 49-95. https://doi.org/10.1007/S10664-019-09739-0/FIGURES/3
[6]. Dewangan, S., & Rao, R. S. (2022). Code smell
detection using classification approaches. In Intelligent
Systems (PP. 257-266). Springer, Singapore. https://doi.org/10.1007/978-981-19-0901-6_25
[7]. Dewangan, S., Rao, R. S., Mishra, A., & Gupta, M.
(2021). A novel approach for code smell detection: an
empirical study. IEEE Access, 9, 162869-162883. https://doi.org/10.1109/ACCESS.2021.3133810
[8]. Dewangan, S., Rao, R. S., Mishra, A., & Gupta, M.
(2022). Code smell detection using ensemble machine
learning algorithms. Applied Sciences, 12(20), 10321.
https://doi.org/10.3390/APP122010321
[9]. Dewangan, S., Rao, R. S., & Yadav, P. S. (2022, July).
Dimensionally reduction based machine learning
approaches for code smells detection. In 2022
International Conference on Intelligent Controller and
Computing for Smart Power (ICICCSP) (PP. 1-4). IEEE.
https://doi.org/10.1109/ICICCSP53532.2022.9862030
[10]. Fowler, M. (N.D.). Refactoring: Improving the Design
of Existing Code. https://Www.Amazon.In/Refactoring-
Improving-Existing-Addison-Wesley-Signature/Dp/0134757599
[11]. Fontana, F. A., & Zanoni, M. (2017). Code smell
severity classification using machine learning techniques.
Knowledge-Based Systems, 128, 43-58. https://doi.org/10.1016/J.KNOSYS.2017.04.014
[12]. Freund, Y., & Schapire, R. E. (1996). Experiments
with a new boosting algorithm. Machine Learning:
Proceedings of the Thirteenth International Conference, 1-9.
[13]. Genender-Feltheimer, A. (2018). Visualizing high
dimensional and big data. Procedia Computer Science,
140, 112-121. https://doi.org/10.1016/J.PROCS.2018.10.308
[14]. Kreimer, J. (2005). Adaptive detection of design
flaws. Electronic Notes in Theoretical Computer Science,
141(4), 117-136. https://doi.org/10.1016/J.ENTCS.2005.02.059
[15]. Liu, H., Jin, J., Xu, Z., Zou, Y., Bu, Y., & Zhang, L. (2019).
Deep learning based code smell detection. IEEE
Transactions on Software Engineering, 47(9), 1811-1837.
https://doi.org/10.1109/TSE.2019.2936376
[16]. Paiva, T., Damasceno, A., Figueiredo, E., &
Sant'Anna, C. (2017). On the evaluation of code smells
and detection tools. Journal of Software Engineering
Research and Development, 5(1), 1–28. https://doi.org/10.1186/S40411-017-0041-1
[17]. Yadav, P. S., Dewangan, S., & Rao, R. S. (2021,
December). Extraction of prediction rules of code smell
using decision tree algorithm. In 2021 10th International
Conference on Internet of Everything, Microwave
Engineering, Communication and Networks (IEMECON)
(PP. 1-5). IEEE. https://doi.org/10.1109/IEMECON53809.2021.9689174
[18]. Yamashita, A., & Moonen, L. (2012, September). Do
code smells reflect important maintainability aspects? In
2012 28th IEEE International Conference on Software
Maintenance (ICSM) (PP. 306-315). IEEE. https://doi.org/10.1109/ICSM.2012.6405287