References
[1]. Agrawal, J., Kapoor, M., & Tomar, R. (2022). A novel
unmanned aerial vehicle-sink enabled mobility model for
military operations in sparse flying ad-hoc network.
Transactions on Emerging Telecommunications
Technologies, 33(5), e4466. https://doi.org/10.1002/ett.4466
[2]. Ananthi, J. V., & Jose, P. S. H. (2021, September).
Implementation of IoT and UAV Based WBAN for
healthcare applications. In 2021 Third International
Conference on Inventive Research in Computing
Applications (ICIRCA) (pp. 37-42). IEEE. https://doi.org/10.1109/ICIRCA51532.2021.9545052
[3]. Ananthi, J. V., & Jose, P. S. H. (2022). Mobility
management UAV-based grouping routing protocol in
flying ad hoc networks for biomedical applications.
International Journal of Communication Systems, e5362.
https://doi.org/10.1002/dac.5362
[4]. Arafat, M. Y., & Moh, S. (2021). Bio-inspired
approaches for energy-efficient localization and clustering in UAV networks for monitoring wildfires in
remote areas. IEEE Access, 9, 18649-18669. https://doi.org/10.1109/ACCESS.2021.3053605
[5]. Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying
ad-hoc networks (FANETs): A survey. Ad Hoc Networks,
11(3), 1254-1270. https://doi.org/10.1016/j.adhoc.2012.12.004
[6]. Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A., &
Clarke, R. H. (2016). Precision wildlife monitoring using
unmanned aerial vehicles. Scientific Reports, 6(1), 1-7.
https://doi.org/10.1038/srep22574
[7]. Kabir, R. H., & Lee, K. (2021). Wildlife monitoring using
a multi-uav system with optimal transport theory. Applied
Sciences, 11(9), 4070. https://doi.org/10.3390/app11094070
[8]. Kakamoukas, G. A., Sarigiannidis, P. G., &
Economides, A. A. (2022). FANETs in agriculture-A routing
protocol survey. Internet of Things, 18, 100183. https://doi.org/10.1016/j.iot.2020.100183
[9]. Khan, M. A., Safi, A., Qureshi, I. M., & Khan, I. U. (2017,
November). Flying ad-hoc networks (FANETs): A review of
communication architectures, and routing protocols. In
2017 First International Conference on Latest Trends in
Electrical Engineering and Computing Technologies
(INTELLECT) (pp. 1-9). IEEE. https://doi.org/10.1109/INTELLECT.2017.8277614
[10]. Kumar, S., & Bansal, A. (2020). Performance
investigation of topology-based routing protocols in flying
ad-hoc networks using NS-2. In IoT and Cloud Computing
Advancements in Vehicular Ad-Hoc Networks (pp. 243-267). https://doi.org/10.4018/978-1-7998-2570-8.ch013
[11]. Kumar, S., & Raw, R. S. (2018a). Flying ad-hoc
networks (FANETs): current state, challenges and
potentials. In INDIACom-2018, 5th International
Conference on Computing for Sustainable Global
Development, 4233-4238.
[12]. Kumar, S., & Raw, R. S. (2018b). Improvement of
railway transportation system using IoT applications and
services. In Big Data Management and the Internet of
Things for Improved Health Systems (pp. 120-141). IGI
Global. https://doi.org/10.4018/978-1-5225-5222-2.ch008
[13]. Kumar, S., Bansal, A., & Raw, R. S. (2020a). Analysis of
effective routing protocols for flying ad-hoc networks.
International Journal of Smart Vehicles and Smart
Transportation (IJSVST), 3(2), 1-18. https://doi.org/10.4018/IJSVST.2020070101
[14]. Kumar, S., Bansal, A., & Raw, R. S. (2020b). Health
monitoring planning for on-board ships through flying ad
hoc network. In Advanced Computing and Intelligent
Engineering (pp. 391-402). Springer, Singapore. https://doi.org/10.1007/978-981-15-1483-8_33
[15]. Kumar, S., Rathore, N. K., Prajapati, M., & Sharma, S.
K. (2022). SF-GoeR: an emergency information
dissemination routing in flying Ad-hoc network to support
healthcare monitoring. Journal of Ambient Intelligence
and Humanized Computing, 1-11. https://doi.org/10.1007/s12652-022-04434-3
[16]. Kumar, S., Raw, R. S., & Bansal, A. (2021a). Minimize
the routing overhead through 3D cone shaped locationaided
routing protocol for FANETs. International Journal of
Information Technology, 13(1), 89-95. https://doi.org/10.1007/s41870-020-00536-3
[17]. Kumar, S., Raw, R. S., & Bansal, A. (2021c). Energy
and direction aware routing protocol for flying ad hoc
networks. In Proceedings of International Conference on
Communication, Circuits, and Systems (pp. 371-378).
Springer, Singapore.https://doi.org/10.1007/978-981-33-4866-0_46
[18]. Kumar, S., Raw, R. S., & Bansal, A. (2022). LoCaL: Linkoptimized
cone-assisted location routing in flying ad
hoc networks. International Journal of Communication
Systems, e5375. https://doi.org/10.1002/dac.5375
[19]. Kumar, S., Raw, R. S., Bansal, A., Mohammed, M. A.,
Khuwuthyakorn, P., & Thinnukool, O. (2021b). 3D location
oriented routing in flying ad-hoc networks for information
dissemination. IEEE Access, 9, 137083-137098. https://doi.org/10.1109/ACCESS.2021.3115000
[20]. Linchant, J., Lisein, J., Semeki, J., Lejeune, P., &
Vermeulen, C. (2015). Are unmanned aircraft systems
(UAS s) the future of wildlife monitoring? A review of
accomplishments and challenges. Mammal Review,
45(4), 239-252. https://doi.org/10.1111/mam.12046
[21]. Mittal, P., Shah, S., & Agarwal, A. (2022). A novel
multi-hop routing structure for throughput maximization in
unmanned aerial vehicle assisted flying ad-hoc networks.
Transactions on Emerging Telecommunications
Technologies, e4575. https://doi.org/10.1002/ett.4575
[22]. Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., &
Alsharif, M. H. (2022). Towards the unmanned aerial
vehicles (UAVs): A comprehensive review. Drones, 6(6),
147. https://doi.org/10.3390/drones6060147
[23]. Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., &
Yagoubi, M. B. (2017). A survey on position-based routing
protocols for flying ad hoc networks (FANETs). Vehicular
Communications, 10, 29-56. https://doi.org/10.1016/j.vehcom.2017.10.003
[24]. Parihar, A. S., & Chakraborty, S. K. (2022). Token
based k-mutual exclusion for multi-UAV FANET. Wireless
Personal Communications, 126(4), 3693-3714. https://doi.org/10.1007/s11277-022-09886-6
[25]. Rahmani, A. M., Ali, S., Yousefpoor, E., Yousefpoor,
M. S., Javaheri, D., Lalbakhsh, P., & Lee, S. W. (2022).
OLSR+: A new routing method based on fuzzy logic in
flying ad-hoc networks (FANETs). Vehicular Communications,
36, 100489. https://doi.org/10.1016/j.vehcom.2022.100489
[26]. Seema, S. K., Sharma, S. K., Khan, S. A., & Singh, P. (2022). Simulation-based performance evaluation of
VANET routing protocols under Indian traffic scenarios.
ICIC Express Letters, 16(1), 67–74. https://doi.org/10.24507/icicel.16.01.67
[27]. Šimek, P., Pavlík, J., Jarolímek, J., Oèenášek, V., &
Stoèes, M. (2017, September). Use of unmanned aerial
vehicles for wildlife monitoring. In Proceedings of the 8th
International Conference on Information and
Communication Technologies in Agriculture, Food and
Environment (HAICTA 2017) (pp. 795-804).
[28]. Srivastava, A., & Prakash, J. (2021). Future FANET with
application and enabling techniques: Anatomization
and sustainability issues. Computer Science Review, 39,
100359. https://doi.org/10.1016/ j.cosrev.2020.100359
[29]. Ullah, S., Mohammadani, K. H., Khan, M. A., Ren, Z.,
Alkanhel, R., Muthanna, A., & Tariq, U. (2022). Positionmonitoring-
based hybrid routing protocol for 3D UAVbased
networks. Drones, 6(11), 327. https://doi.org/10.3390/drones6110327
[30]. Wheeb, A. H., Nordin, R., Samah, A. A., Alsharif,
M. H., & Khan, M. A. (2021). Topology-based routing
protocols and mobility models for flying ad hoc
networks: a contemporary review and future research
directions. Drones, 6(1), 9. https://doi.org/10.3390/drones6010009