Chaotic Particle Swarm Optimization with Attractive Search Space Border Points for Optimal Reactive Power Dispatch

P. Lokender Reddy*, G. Yesuratnam**
*-** Department of Electrical Engineering, University College of Engineering, Osmania University, Hyderabad, Telangana, India.
Periodicity:July - September'2022
DOI : https://doi.org/10.26634/jee.16.1.19099

Abstract

This paper presents a reliable approach for optimal reactive power dispatch based on chaotic particle swarm optimization with attractive search space border points, where the particles are randomly attracted to the boundary points of the search space in each direction avoiding stagnation of the population. The introduction of chaotic dynamics improves the stability and rate of convergence. The algorithm is further improved by using Latin Hypercube Sampling (LHS) to create diversity in the population. The proposed algorithm is used for optimal reactive power dispatch with three objective functions, namely: minimization of real power loss, voltage stability index, and sum squared voltage deviations. The algorithm is tested on a standard 30-bus system of the Institute of Electrical and Electronics Engineers (IEEE) and on a practical 75-bus Indian Power System. The results obtained with the proposed algorithm are compared with the conventional interior point method and the basic particle swarm optimization algorithm, and the effectiveness of the proposed algorithm is demonstrated.

Keywords

Particle Swarm Optimization, Chaotic maps, Attractive search space border points, Optimal Reactive Power Dispatch, Latin Hypercube Initialization

How to Cite this Article?

Reddy, P. L., and Yesuratnam, G. (2022). Chaotic Particle Swarm Optimization with Attractive Search Space Border Points for Optimal Reactive Power Dispatch. i-manager’s Journal on Electrical Engineering, 16(1), 1-14. https://doi.org/10.26634/jee.16.1.19099

References

[1]. Alatas, B. (2010). Chaotic harmony search algorithms. Applied Mathematics and Computation, 216(9), 2687-2699. https://doi.org/10.1016/j.amc.2010.03.114
[2]. Alatas, B., Akin, E., & Ozer, A. B. (2009). Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals, 40(4), 1715-1734. https://doi.org/10.1016/j.chaos.2007.09.063
[3]. Balachennaiah, P., Suryakalavathi, M., & Nagendra, P. (2016). Optimizing real power loss and voltage stability limit of a large transmission network using firefly algorithm. Engineering Science and Technology, an International Journal, 19(2), 800-810. https://doi.org/10.1016/j.jestch.2015.10.008
[4]. Devaraj, D., & Roselyn, J. P. (2010). Genetic algorithm based reactive power dispatch for voltage stability improvement. International Journal of Electrical Power & Energy Systems, 32(10), 1151-1156. https://doi.org/10.1016/j.ijepes.2010.06.014
[5]. Duman, S., Sönmez, Y. U. S. U. F., Güvenç, U., & Yörükeren, N. (2012). Optimal reactive power dispatch using a gravitational search algorithm. IET Generation, Transmission & Distribution, 6(6), 563-576. https://doi.org/10.1049/iet-gtd.2011.0681
[6]. Esmin, A. A., Lambert-Torres, G., & De Souza, A. Z. (2005). A hybrid particle swarm optimization applied to loss power minimization. IEEE Transactions on Power Systems, 20(2), 859-866. https://doi.org/10.1109/TPWRS.2005.846049
[7]. Gandomi, A. H., Yang, X. S., Talatahari, S., & Alavi, A. H. (2013). Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation, 18(1), 89-98. https://doi.org/10.1016/j.cnsns.2012.06.009
[8]. Grudinin, N. (1998). Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power Systems, 13(4), 1219-1225. https://doi.org/10.1109/59.736232
[9]. Khan, F., Sunbul, A., Ali, M. Y., Abdei-Gawad, H., Rahnamayan, S., & Sood, V. K. (2018, July). Maximum power point tracking in photovoltaic farms using DE and PSO algorithms: A comparative study. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-9). IEEE. https://doi.org/10.1109/CEC.2018.8477797
[10]. Lee, K. Y., Park, Y. M., & Ortiz, J. L. (1984). Optimal real and reactive power dispatch. Electric Power Systems Research, 7(3), 201-212. https://doi.org/10.1016/0378-7796(84)90004-X
[11]. Li-Jiang, Y., & Tian-Lun, C. (2002). Application of chaos in genetic algorithms. Communications in Theoretical Physics, 38(2), 168-172. https://doi.org/10.1088/0253-6102/38/2/168
[12]. Mahadevan, K., & Kannan, P. S. (2010). Comprehensive learning particle swarm optimization for reactive power dispatch. Applied Soft Computing, 10(2), 641-652. https://doi.org/10.1016/j.asoc.2009.08.038
[13]. Mouassa, S., Bouktir, T., & Salhi, A. (2017). Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Engineering Science and Technology, an International Journal, 20(3), 885-895. https://doi.org/10.1016/j.jestch.2017.03.006
[14]. Niknam, T., Narimani, M. R., Aghaei, J., & Azizipanah-Abarghooee, R. (2012). Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Generation, Transmission & Distribution, 6(6), 515-527. https://doi.org/10.1049/iet-gtd.2011.0851
[15]. Pluhacek, M., Senkerik, R., & Davendra, D. (2015). Chaos particle swarm optimization with eensemble of chaotic systems. Swarm and Evolutionary Computation, 25, 29-35. https://doi.org/10.1016/j.swevo.2015.10.008
[16]. Pluhacek, M., Senkerik, R., Viktorin, A., & Kadavy, T. (2017, June). PSO with attractive search space border points. In International Conference on Artificial Intelligence and Soft Computing (pp. 665-675). Springer, Cham. https://doi.org/10.1007/978-3-319-59060-8_60
[17]. Pluhacek, M., Senkerik, R., Viktorin, A., Kadavy, T., & Zelinka, I. (2018, July). Chaos driven PSO with attractive search space border points. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-6). IEEE. https://doi.org/10.1109/CEC.2018.8477960
[18]. Polprasert, J., Ongsakul, W., & Dieu, V. N. (2016). Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization. Electric Power Components and Systems, 44(5), 518-532. https://doi.org/10.1080/15325008.2015.1112449
[19]. Rajan, A., & Malakar, T. (2015). Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm. International Journal of Electrical Power & Energy Systems, 66, 9-24. https://doi.org/10.1016/j.ijepes.2014.10.041
[20]. Roy, P. K., & Paul, C. (2015). Optimal power flow using krill herd algorithm. International Transactions on Electrical Energy Systems, 25(8), 1397-1419. https://doi.org/10.1002/etep.1888
[21]. Saddique, M. S., Bhatti, A. R., Haroon, S. S., Sattar, M. K., Amin, S., Sajjad, I. A., ... & Rasheed, N. (2020). Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques-Status and technological review. Electric Power Systems Research, 178, 106031. https://doi.org/10.1016/j.epsr.2019.106031
[22]. Sayah, S., & Hamouda, A. (2019). Optimal power flow solution of integrated AC-DC power system using enhanced differential evolution algorithm. International Transactions on Electrical Energy Systems, 29(2), e2737. https://doi.org/10.1002/etep.2737
[23]. Singh, H., & Srivastava, L. (2016). Recurrent multiobjective differential evolution approach for reactive power management. IET Generation, Transmission & Distribution, 10(1), 192-204. https://doi.org/10.1049/ietgtd.2015.0648
[24]. Srivastava, L., & Singh, H. (2015). Hybrid multi-swarm particle swarm optimisation based multi-objective reactive power dispatch. IET Generation, Transmission & Distribution, 9(8), 727-739.
[25]. Sun, D. I., Ashley, B., Brewer, B., Hughes, A., & Tinney, W. F. (1984). Optimal power flow by Newton approach. IEEE Transactions on Power Apparatus and Systems, 103(10), 2864-2880. https://doi.org/10.1109/TPAS.1984.318284
[26]. Taher, M. A., Kamel, S., Jurado, F., & Ebeed, M. (2019). An improved moth-flame optimization algorithm for solving optimal power flow problem. International Transactions on Electrical Energy Systems, 29(3), e2743. https://doi.org/10.1002/etep.2743
[27]. Thukaram, B. D., & Parthasarathy, K. (1996). Optimal reactive power dispatch algorithm for voltage stability improvement. International Journal of Electrical Power & Energy Systems, 18(7), 461-468. https://doi.org/10.1016/0142-0615(96)00004-X
[28]. Thukaram, D., & Yesuratnam, G. (2006). Comparison of optimum reactive power schedule with different objectives using LP technique. International Journal of Emerging Electric Power Systems, 7(3), 1-29.
[29]. Ting, T. O., Wong, K. P., & Chung, C. Y. (2008). Hybrid constrained genetic algorithm/particle swarm optimisation load flow algorithm. IET Generation, Transmission & Distribution, 2(6), 800-812.
[30]. Tripathy, M., & Mishra, S. (2006, December). Optimizing voltage stability limit and real power loss in a large power system using bacteria foraging. In 2006 International Conference on Power Electronic, Drives and Energy Systems (pp. 1-6). IEEE. https://doi.org/10.1109/PEDES.2006.344303
[31]. Wu, B., & Fan, S. H. (2011, July). Improved artificial bee colony algorithm with chaos. In International Workshop on Computer Science for Environmental Engineering and EcoInformatics (pp. 51-56). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22694-6_8
[32]. Wu, X., Piao, Z., Liu, Y., & Luo, H. (2010, July). Reactive power and voltage control based on improved particle swarm optimization in power system. In 2010 8th World Congress on Intelligent Control and Automation (pp. 5291-5295). IEEE. https://doi.org/10.1109/WCICA.2010.5554836
[33]. Zhu, J. Z., & Xiong, X. F. (2003). Optimal reactive power control using modified interior point method. Electric Power Systems Research, 66(2), 187-192. https://doi.org/10.1016/S0378-7796(03)00078-6
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.