References
[1]. Amarnath, J. S., Edberg, C., Bharath, G. R., Girish, B.
R., Chandrasekhar, G. L., & Nagaral, M. (2016). Hardness
and tensile behavior of AL-4.5% CU-SIC-Graphite
particulates reinforced hybrid composites. International
Journal of Engineering Research, 5(6), 1129–1254.
[2]. Bazarnik, P., Nosewicz, S., Romelczyk-Baishya, B.,
Chmielewski, M., Nędza, A. S., Maj, J., & Langdon, T. G.
(2019). Effect of spark plasma sintering and high-pressure
torsion on the microstructural and mechanical properties
of a Cu–SiC composite. Materials Science and
Engineering: A, 766, 138350. https://doi.org/10.1016/j.msea.2019.138350
[3]. Esezobor, D., & Oladoye, A. (2011, February).
Improvement on the tribological characteristics of
particulate copper silicon carbide composites. In
Proceedings of the EPD Congress 2011 (pp. 827-834).
[4]. Haque, S., Bharti, P. K., & Ansari, A. H. (2014).
Mechanical and machining properties analysis of
Al6061-Cu-reinforced SiC p metal matrix composite.
Journal of Minerals and Materials Characterization and
Engineering, 2(1), 54-60. https://doi.org/10.4236/jmmce.2014.21009
[5]. Hussein, M. K., Jameel, W. W., & Sabah, N. F. A. (2018).
Fabrication of copper-graphite MMCs using powder
metallurgy technique. Journal of Engineering, 24(10), 49-59. https://doi.org/10.31026/j.eng.2018.10.04
[6]. Kumar, S., Yadav, A., Patel, V., Nahak, B., & Kumar, A.
(2021). Mechanical behaviour of SiC particulate
reinforced Cu alloy based metal matrix composite.
Materials Today: Proceedings, 41, 186-190. https://doi.org/10.1016/j.matpr.2020.08.580
[7]. Ma, W., & Lu, J. (2011). Effect of sliding speed on
surface modification and tribological behavior of
copper–graphite composite. Tribology Letters, 41(2),
363-370. https://doi.org/10.1007/s11249-010-9718-x
[8]. Moustafa, S. F., El-Badry, S. A., Sanad, A. M., &
Kieback, B. (2002). Friction and wear of copper–graphite
composites made with Cu-coated and uncoated
graphite powders. Wear, 253(7-8), 699-710. https://doi.org/10.1016/S0043-1648(02)00038-8
[9]. Murthy, L. N. (2018). Mechanical characterization
and optimization of machinability characteristics of
aluminium copper graphite silicon carbide hybrid
composites. Lakshmi Narasimha Murthy Journal of
Engineering Research and Application, 8(6), 1-10.
[10]. Peitao, G., Mingyang, T., & Chaoyang, Z. (2019).
Tribological and corrosion resistance properties of
graphite composite coating on AZ31 Mg alloy surface
produced by plasma electrolytic oxidation. Surface and
Coatings Technology, 359, 197-205. https://doi.org/10.1016/j.surfcoat.2018.12.073
[11]. Pelleg, J., Ruhr, M., & Ganor, M. (1996). Control of the
reaction at the fibre-matrix interface in a Cu/SiC metal
matrix composite by modifying the matrix with 2.5 wt.%
Fe. Materials Science and Engineering: A, 212(1), 139-148. https://doi.org/10.1016/0921-5093(96)10191-X
[12]. Prosviryakov, A. S. (2015). SiC content effect on the
properties of Cu–SiC composites produced by
mechanical alloying. Journal of Alloys and Compounds, 632, 707-710. https://doi.org/10.1016/j.jallcom.2015.01.298
[13]. Rajkumar, K., & Aravindan, S. (2009). Microwave
sintering of copper–Graphite composites. Journal of
Materials Processing Technology, 209(15-16), 5601-5605.
https://doi.org/10.1016/j.jmatprotec.2009.05.017
[14]. Somani, N., Tyagi, Y. K., & Gupta, N. K. (2021). An
investigation on the influence of sintering temperature on
microstructural, physical and mechanical properties of
Cu-SiC composites. Journal of Engineering, Design and
Technology. https://doi.org/10.1108/JEDT-07-2021-0374
[15]. Tarai, H., Samal, P., Vundavilli, P. R., & Surekha, B.
(2022). Experimental study of microstructural and
mechanical characterization of silicon-bronze copper
alloy (C87600) hybrid composites reinforced with SiC-Gr
particles by stir casting. Materials Today: Proceedings,
62(6), 3221-3225. https://doi.org/10.1016/j.matpr.2022.04.218