References
[1]. Bahrawi, B. (2019). Sentiment analysis using random
forest algorithm-online social media based. Journal of
Information Technology and Its Utilization, 2(2), 29-33. https://doi.org/10.30818/jitu.2.2.2695
[2]. Chauhan, G. S., Agrawal, P., & Meena, Y. K. (2019).
Aspect-based sentiment analysis of students' feedback
to improve teaching–learning process. Information and
Communication Technology for Intelligent Systems, 107,
259-266. https://doi.org/10.1007/978-981-13-1747-7_25
[3]. Elbagir, S., & Yang, J. (2018, December). Sentiment
analysis of twitter data using machine learning
techniques and scikit-learn. In Proceedings of the 2018
International Conference on Algorithms, Computing and
Artificial Intelligence, 1-5. https://doi.org/10.1145/3302425.3302492
[4]. Elnadree, R. S., El-Sisi, A. B., & Atwa, W. S. (2022).
Performance investigation of features extraction and
classification approaches for sentiment analysis systems.
International Journal of Computers and Information, 9(1),
1-14. https://doi.org/10.21608/IJCI.2021.65578.1044
[5]. Geetha, R., Padmavathy, T., & Anitha, R. (2021).
Prediction of the academic performance of slow learners
using efficient machine learning algorithm. Advances in
Computational Intelligence, 1(4), 1-12. https://doi.org/10.1007/s43674-021-00005-9
[6]. Hew, K. F., Hu, X., Qiao, C., & Tang, Y. (2020). What
predicts student satisfaction with MOOCs: A gradient
boosting trees supervised machine learning and
sentiment analysis approach. Computers & Education,
145, 103724. https://doi.org/10.1016/j.compedu.2019.103724
[7]. Kandhro, I. A., Chhajro, M. A., Kumar, K., Lashari, H.
N., & Khan, U. (2019). Student feedback sentiment
analysis model using various machine learning schemes:
a review. Indian Journal of Science and Technology,
12(14), 1-9. https://doi.org/10.17485/ijst/2019/v12i14/143243
[8]. Katragadda, S., Ravi, V., Kumar, P., & Lakshmi, G. J.
(2020, March). Performance analysis on student feedback using machine learning algorithms. In 2020 6th
International Conference on Advanced Computing and
Communication Systems (ICACCS), IEEE, 1161-1163.
https://doi.org/10.1109/ICACCS48705.2020.9074334
[9]. Kavitha, R. K. (2019). Sentiment research on student
feedback to improve experiences in blended learning
environments. International Journal of Innovative
Technology and Exploring Engineering (IJITEE), 8(11S),
159-163. https://doi.org/10.35940/ijitee.K1034.09811S19
[10]. Novendri, R., Callista, A. S., Pratama, D. N., &
Puspita, C. E. (2020). Sentiment analysis of YouTube movie
trailer comments using naïve bayes. Bulletin of Computer
Science and Electrical Engineering, 1(1), 26-32. https://doi.org/10.25008/bcsee.v1i1.5
[11]. Okoye, K., Arrona-Palacios, A., Camacho-Zuñiga,
C., Achem, J. A. G., Escamilla, J., & Hosseini, S. (2022).
Towards teaching analytics: a contextual model for
analysis of students' evaluation of teaching through text
mining and machine learning classification. Education
and Information Technologies, 27(3), 3891-3933. https://doi.org/10.1007/s10639-021-10751-5
[12]. Rustam, F., Khalid, M., Aslam, W., Rupapara, V.,
Mehmood, A., & Choi, G. S. (2021). A performance
comparison of supervised machine learning models for
Covid-19 tweets sentiment analysis. Plos One, 16(2), e0245909. https://doi.org/10.1371/journal.pone.0245909
[13]. Tamrakar, L., Shrivastava, P., & Ghosh, S. M. (2021).
An analytical study of feature extraction techniques for
student sentiment analysis. Turkish Journal of Computer
and Mathematics Education (TURCOMAT), 12(11), 2900-2908.
[14]. Umair, M., Hakim, A., Hussain, A., & Naseem, S.
(2021). Sentiment analysis of students' feedback before
and after COVID-19 pandemic. International Journal on
Emerging Technologies, 12(2), 177-182.