References
[1]. Efe, G. C., Altinsoy, I., Yener, T., Ipek, M., Zeytin, S., &
Bindal, C. (2010). Characterization of cemented Cu
matrix composites reinforced with SiC. Vacuum, 85(5),
643-647. https://doi.org/10.1016/j.vacuum.2010.09.009
[2]. Efe, G. C., İpek, M., Zeytin, S., & Bindal, C. (2012a). An
investigation of the effect of SiC particle size on Cu–SiC
composites. Composites Part B: Engineering, 43(4),
1813-1822. https://doi.org/10.1016/j.compositesb.2012.01.006
[3]. Efe, G. C., Zeytin, S., & Bindal, C. (2012b). The effect
of SiC particle size on the properties of Cu–SiC
composites. Materials & Design (1980-2015), 36, 633-639. https://doi.org/10.1016/j.matdes.2011.11.019
[4]. Fatoba, O. S., Popoola, O., & Popoola, A. P. I. (2015).
The effects of silicon carbide reinforcement on the
properties of Cu/SiCp composites. Silicon, 7(4), 351-356.
https://doi.org/10.1007/s12633-014-9199-x
[5]. Gewfiel, E., El-Meniawi, M. A. H., & Fouad, Y. (2012,
October). The effects of graphite and SiC formation on
mechanical and wear properties of aluminum-graphite
(Al/Gr) composites. In 2012 International Conference on
Engineering and Technology (ICET) (pp. 1-6). IEEE.
https://doi.org/10.1109/ICEngTechnol.2012.6396157
[6]. Hussein, M. K., Jameel, W. W., & Sabah, N. F. A. (2018).
Fabrication of copper-graphite mmcs using powder
metallurgy technique. Journal of Engineering, 24(10), 49-59. https://doi.org/10.31026/j.eng.2018.10.04
[7]. Kumar, S., Yadav, A., Patel, V., Nahak, B., & Kumar, A.
(2021). Mechanical behaviour of SiC particulate
reinforced Cu alloy based metal matrix composite.
Materials Today: Proceedings, 41, 186-190.
https://doi.org/10.1016/j.matpr.2020.08.580
[8]. Moustafa, S. F., Abdel-Hamid, Z., & Abd-Elhay, A. M.
(2002). Copper matrix SiC and Al2O3 particulate
composites by powder metallurgy technique. Materials
Letters, 53(4-5), 244-249. https://doi.org/10.1016/S0167-577X(01)00485-2
[9]. Nayak, D., Ray, N., Sahoo, R., & Debata, M. (2014).
Analysis of tribological performance of Cu hybrid
composites reinforced with graphite and TiC using
factorial techniques. Tribology Transactions, 57(5), 908-918. https://doi.org/10.1080/10402004.2014.923079
[10]. Okuni, T., Miyamoto, Y., Abe, H., & Naito, M. (2014).
Joining of silicon carbide and graphite by spark plasma
sintering. Ceramics International, 40(1), 1359-1363.
https://doi.org/10.1016/j.ceramint.2013.07.017
[11]. Pradhan, A. K., & Das, S. (2014). Dry sliding wear and
friction behavior of Cu-SiC nanocomposite coating
prepared by pulse reverse electrodeposition. Tribology
Transactions, 57(1), 46-56. https://doi.org/10.1080/10402004.2013.843739
[12]. Prosviryakov, A. S. (2015). SiC content effect on the
properties of Cu–SiC composites produced by
mechanical alloying. Journal of Alloys and Compounds,
632, 707-710. https://doi.org/10.1016/j.jallcom.2015.01.298
[13]. Qian, G., Feng, Y., Chen, Y. M., Mo, F., Wang, Y. Q., &
Liu, W. H. (2015). Effect of WS2 addition on electrical
sliding wear behaviors of Cu–graphite–WS2 composites.
Transactions of Nonferrous Metals Society of China, 25(6),
1986-1994. https://doi.org/10.1016/S1003-6326(15)63807-9
[14]. Rajkumar, K., & Aravindan, S. (2009). Microwave
sintering of copper–graphite composites. Journal of Materials Processing Technology, 209(15-16), 5601-5605. https://doi.org/10.1016/j.jmatprotec.2009.05.017
[15]. Samal, C. P., Parihar, J. Y., & Chaira, D. (2013). The
effect of milling and sintering techniques on mechanical
properties of Cu–graphite metal matrix composite
prepared by powder metallurgy route. Journal of Alloys
and Compounds, 569, 95-101. https://doi.org/10.1016/j.jallcom.2013.03.122
[16]. Singha, M. K., & Gautama, R. K. (2015). Mechanical
property of dual reinforced copper based hybrid
composite. Retrieved from https://www.researchgate.net/profile/Manvandra-Singh/publication/288245903_Mechanical_property_of_dual_reinforced_copper_based_hybrid_composite/links/567f87e508aebccc4e05fbb5/Mechanical-property-of-dual-reinforced-copperbased-hybrid-composite.pdf
[17]. Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and
mechanical characteristics of in situ metal matrix
composites. Materials Science and Engineering: R:
Reports, 29(3-4), 49-113. https://doi.org/10.1016/S0927-796X(00)00024-3
[18]. Zhang, S., & Wang, F. (2007). Comparison of friction
and wear performances of brake material dry sliding
against two aluminum matrix composites reinforced with
different SiC particles. Journal of Materials Processing
Technology, 182(1-3), 122-127. https://doi.org/10.1016/j.jmatprotec.2006.07.018