References
[1]. Ahmed, S. R. A., UÇAN, O. N., Duru, A. D., & Bayat, O.
(2018). Breast cancer detection and image evaluation
using augmented deep convolutional neural networks.
Aurum Journal of Engineering Systems and Architecture,
2(2), 121-129.
[2]. Barata, C., & Marques, J. S. (2019, April). Deep
learning for skin cancer diagnosis with hierarchical
architectures. In 2019, IEEE 16th International Symposium
on Biomedical Imaging (ISBI 2019), (pp. 841-845). IEEE.
https://doi.org/10.1109/ISBI.2019.8759561
[3]. Demyanov, S., Chakravorty, R., Abedini, M., Halpern,
A., & Garnavi, R. (2016, April). Classification of
dermoscopy patterns using deep convolutional neural
networks. In 2016, IEEE 13th International Symposium on
Biomedical Imaging (ISBI), (pp. 364-368). IEEE. https://doi.org/10.1109/ISBI.2016.7493284
[4]. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S.
M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level
classification of skin cancer with deep neural networks.
Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056
[5]. Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.
F., & Petkov, N. (2015). MED-NODE: A computer-assisted
melanoma diagnosis system using non-dermoscopic
images. Expert Systems with Applications, 42(19), 6578-6585. https://doi.org/10.1016/j.eswa.2015.04.034
[6]. Gutman, D., Codella, N. C., Celebi, E., Helba, B.,
Marchetti, M., Mishra, N., & Halpern, A. (2016). Skin lesion
analysis toward melanoma detection: A challenge at the
international symposium on biomedical imaging (ISBI)
2016, hosted by the international skin imaging
collaboration (ISIC). arXiv preprint arXiv:1605.01397.
https://doi.org/10.48550/arXiv.1605.01397
[7]. Hirayama, K., Tan, J. K., & Kim, H. (2016, October).
Extraction of GGO candidate regions from the LIDC
database using deep learning. In 2016, 16th International
Conference on Control, Automation and Systems
(ICCAS), (pp. 724-727). IEEE. https://doi.org/10.1109/ICCAS.2016.7832398
[8]. Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2019).
Classification of skin lesions using transfer learning and
augmentation with Alex-net. Plos One, 14(5), e0217293.
https://doi.org/10.1371/journal.pone.0217293
[9]. Hussein, S., Gillies, R., Cao, K., Song, Q., & Bagci, U.
(2017, April). Tumornet: Lung nodule characterization
using multi-view convolutional neural network with
gaussian process. In 2017, IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017), (pp. 1007-1010). IEEE. https://doi.org/10.1109/ISBI.2017.7950686
[10]. Kim, Y., Hwang, I., & Cho, N. I. (2017, September).
Convolutional neural networks and training strategies for
skin detection. In 2017 IEEE International Conference on
Image Processing (ICIP), (pp. 3919-3923). IEEE.
https://doi.org/10.1109/ICIP.2017.8297017
[11]. Mahbod, A., Schaefer, G., Wang, C., Ecker, R., &
Ellinge, I. (2019, May). Skin lesion classification using
hybrid deep neural networks. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), (pp. 1229-1233). IEEE. https://doi.org/10.1109/ICASSP.2019.86833 52
[12]. Nachbar, F., Stolz, W., Merkle, T., Cognetta, A. B., Vogt, T., Landthaler, M., ... & Plewig, G. (1994). The ABCD
rule of dermatoscopy: high prospective value in the
diagnosis of doubtful melanocytic skin lesions. Journal of
the American Academy of Dermatology, 30(4), 551-559.
https://doi.org/10.1016/S0190-9622(94)70061-3
[13]. Neema, M., Nair, A. S., Joy, A., Menon, A. P., & Haris,
A. (2020). Skin lesion/cancer detection using deep
learning. International Journal of Applied Engineering
Research, 15(1), 11-17.
[14]. Nelson, C. A., Pérez-Chada, L. M., Creadore, A., Li,
S. J., Lo, K., Manjaly, P., ... & Mostaghimi, A. (2020). Patient
perspectives on the use of artificial intelligence for skin
cancer screening: A qualitative study. JAMA Dermatology,
156(5), 501-512. https://doi.org/10.1001/jamadermatol.2019.5014
[15]. Oh, S., Kim, J. H., Choi, S. W., Lee, H. J., Hong, J., &
Kwon, S. H. (2019). Physician confidence in artificial
intelligence: an online mobile survey. Journal of Medical
Internet Research, 21(3), e12422. https://doi.org/10.2196/12422
[16]. Panda, S. (2010). Nonmelanoma skin cancer in
India: Current scenario. Indian Journal of Dermatology,
55(4), 373-378. https://doi.org/10.4103/0019-5154.74551
[17]. Pomponiu, V., Nejati, H., & Cheung, N. M. (2016,
September). Deepmole: Deep neural networks for skin
mole lesion classification. In 2016 IEEE International
Conference on Image Processing (ICIP), (pp. 2623-2627).
IEEE. https://doi.org/10.1109/ICIP.2016.7532834
[18]. Prasad, K., Sajith, P. S., Neema, M., Madhu, L., &
Priya, P. N. (2019, October). Multiple eye disease
detection using deep neural network. In TENCON 2019-
2019 IEEE Region 10 Conference (TENCON), (pp. 2148-2153). IEEE. https://doi.org/10.1109/TENCON.2019.8929666
[19]. Rathod, J., Waghmode, V., Sodha, A., &
Bhavathankar, P. (2018, March). Diagnosis of skin diseases
using convolutional neural networks. In 2018 Second
International Conference on Electronics,
Communication and Aerospace Technology (ICECA),
(pp. 1048-1051). IEEE. https://doi.org/10.1109/ICECA.2018.8474593
[20]. Thao, L. T., & Quang, N. H. (2017, November).
Automatic skin lesion analysis towards melanoma
detection. In 2017 21st Asia Pacific Symposium on
Intelligent and Evolutionary Systems (IES), (pp. 106-111).
IEEE. https://doi.org/10.1109/IESYS.2017.8233570