References
[1]. Akhila, J. A., Markose, C., & Aneesh, R. P. (2017, July).
Feature extraction and classification of dementia with
neural network. In 2017, International Conference on
Intelligent Computing, Instrumentation and Control
Technologies (ICICICT) (pp. 1446-1450). IEEE. https://doi.org/10.1109/ICICICT1.2017.8342782
[2]. Chakrabarty, N. (2019). Brain mri images for brain
tumor detection. Journal of Experimental Medicine
(JEM), 216, 539-555.
[3]. Chen, W., Qiao, X., Liu, B., Qi, X., Wang, R., & Wang, X.
(2017, October). Automatic brain tumor segmentation
based on features of separated local square. In 2017
Chinese Automation Congress (CAC) (pp. 6489-6493).
IEEE. https://doi.org/10.1109/CAC.2017.8243946
[4]. Damodharan, S., & Raghavan, D. (2015). Combining
tissue segmentation and neural network for brain tumor
detection. International Arab Journal of Information
Technology (IAJIT), 12(1), 42-52.
[5]. Gurbină, M., Lascu, M., & Lascu, D. (2019, July).
Tumor detection and classification of MRI brain image
using different wavelet transforms and support vector
machines. In 2019, 42nd International Conference on
Telecommunications and Signal Processing (TSP) (pp.
505-508). IEEE. https://doi.org/10.1109/TSP.2019.8769040
[6]. Hemanth, G., Janardhan, M., & Sujihelen, L. (2019,
April). Design and implementing brain tumor detection
using machine learning approach. In 2019, 3rd
International Conference on Trends in Electronics and
Informatics (ICOEI) (pp. 1289-1294). IEEE. https://doi.org/10.1109/ICOEI.2019.8862553
[7]. Louis, D. N., Perry, A., Reifenberger, G., Von Deimling,
A., Figarella-Branger, D., Cavenee, W. K., ... & Ellison, D.
W. (2016). The 2016 World Health Organization
classification of tumors of the central nervous system: a
summary. Acta Neuropathologica, 131(6), 803-820.
https://doi.org/10.1007/s00401-016-1545-1
[8]. Mathew, A. R., & Anto, P. B. (2017, July). Tumor
detection and classification of MRI brain image using
wavelet transform and SVM. In 2017 International
Conference on Signal Processing and Communication
(ICSPC) (pp. 75-78). IEEE.
[9]. Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2017,
September). Tversky loss function for image segmentation
using 3D fully convolutional deep networks. In
International Workshop on Machine Learning in Medical
Imaging (pp. 379-387). Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_44
[10]. Somasundaram, S., & Gobinath, R. (2019). Early
Brain Tumour Prediction using an Enhancement Feature
Extraction Technique and Deep Neural Networks.
International Journal of Innovative Technology and
Exploring Engineering (IJITEE), 8(10).
[11]. Soumya, R. S., Neethu, S., Niju, T. S., Renjini, A., &
Aneesh, R. P. (2016, July). Advanced earlier melanoma
detection algorithm using colour correlogram. In 2016 International Conference on Communication Systems
and Networks (ComNet) (pp. 190-194). IEEE. https://doi.org/10.1109/CSN.2016.7824012
[12]. Suresh, M., Sinha, A., & Aneesh, R. P. (2019). Real-
Time Hand Gesture Recognition Using Deep Learning.
International Journal of Innovations and Implementations
in Engineering, 1, 11-15.
[13]. Thanveersha, M., Jayni, J., Fathima, T., & Sinha, A. (2019). Automatic brain hemorrhage detection using
artificial neural network. International Journal of
Innovations and Implementations in Engineering.
[14]. Zhang, Z., Liu, Q., & Wang, Y. (2018). Road extraction
by deep residual u-net. IEEE Geoscience and Remote
Sensing Letters, 15(5), 749-753. https://doi.org/10.1109/LGRS.2018.2802944