Smart Antenna Design for Mobile Application

Sachin Bandewar*, Virendra Singh Chaudhary**
*-** Ram Krishna Dharmarth Foundation University, Bhopal, Madhya Pradesh, India.
Periodicity:July - December'2022
DOI : https://doi.org/10.26634/jmt.9.2.19065

Abstract

Digitalization is becoming more and more important. Building smart houses and industries to offer humans longer lives is one of the main goals of the digitization movement. The main aim of this work is to make those verbal exchange modules more powerful with the aid of either improving the antennas to have a higher layout or changing it with new varieties of antennas that are better able to facilitate powerful verbal exchange. This paper proposes an antenna that can be applied to a verbal exchange module to be able to perform inside the Industrial, Scientific, and Medical (ISM) band at 2.4 GHz. After designing and simulating a complete Printed Circuit Board (PCB) antenna, it found that a few designs produced advanced simulation effects in terms of gain, reflection coefficient, voltage standing wave ratio (VSWR), and band width. Always-pointing antennae are protected by the layout of the antenna, allowing it to protect features inside the Global Positioning System (GPS) and ISM (Industrial, Scientific, and Medical) bands for Wi-Fi devices.

Keywords

Smart Antenna, ISM, Bandwidth, Gain, VSWR.

How to Cite this Article?

Bandewar, S., and Chaudhary, V. S. (2022). Smart Antenna Design for Mobile Application. i-manager’s Journal on Mobile Applications & Technologies, 9(2), 7-15. https://doi.org/10.26634/jmt.9.2.19065

References

[1]. Aboumahmoud, I., Muqaibel, A., Alhassoun, M., & Alawsh, S. (2021). A review of sparse sensor arrays for twodimensional direction-of-arrival estimation. IEEE Access, 9, 92999-93017. https://doi.org/10.1109/ACCESS.2021.3092529
[2]. Chang, D. C., & Hu, C. N. (2012). Smart antennas for advanced communication systems. Proceedings of the IEEE, 100(7), 2233-2249. https://doi.org/10.1109/JPROC.2012.2187409
[3]. Department of Telecommunication. (n.d.). Retrieved from http://www.dot.gov.in/spectrum-management/spectrum-management/auction-spectrum-1800-mhz-900mhz
[4]. Dharsandiya, F., & Parmar, I. (2014). Optimization of antenna design for gain enhancement using array. International Journal of Advanced Research in Computer Science and Software Engineering, 4(1), 1038-1043.
[5]. Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, 14(7), 3899-3911. https://doi.org/10.1109/TWC.2015.2414413
[6]. Hong, W., Ko, S. T., Lee, Y., & Baek, K. H. (2015, March). Multi-polarized antenna array configuration for mmWave 5G mobile terminals. In 2015 International Workshop on Antenna Technology (iWAT), (pp. 60-61). IEEE. https://doi.org/10.1109/IWAT.2015.7365311
[7]. Hosseini, K., Yu, W., & Adve, R. S. (2014). Large-scale MIMO versus network MIMO for multicell interference mitigation. IEEE Journal of Selected Topics in Signal Processing, 8(5), 930-941. https://doi.org/10.1109/JSTSP.2014.2327594
[8]. Hoydis, J., Hosseini, K., Ten Brink, S., & Debbah, M. (2013). Making smart use of excess antennas: Massive MIMO, small cells, and TDD. Bell Labs Technical Journal, 18(2), 5-21. https://doi.org/10.1002/bltj.21602
[9]. Hu, W., Chen, Z., Qian, L., Wen, L., Luo, Q., Xu, R., ... & Gao, S. (2022). Wideband back-cover antenna design using dual characteristic modes with high isolation for 5G MIMO smartphone. IEEE Transactions on Antennas and Propagation, 70(7), 5254-5265. https://doi.org/10.1109/TAP.2022.3145456
[10]. Huang, Y., & Boyle, K. (2008). Antennas: From Theory to Practice. John Wiley & Sons.
[11]. International Telecommunication Union. (2015). World in 2015-ICT Facts and Figures. Retrieved from https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ ICTFactsFigures2015.pdf
[12]. Jain, R. K., Katiyar, S., & Agrawal, N. K. (2011). Smart antenna for cellular mobile communication. VSRD International Journal of Electrical, Electronics & Communication Engineering, 1(9), 530-541. https://doi.org/10.48550/arXiv.1204.1790
[13]. Kim, T., Bang, I., & Sung, D. K. (2014, September). Design criteria on a mmWave-based small cell with directional antennas. In 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), (pp. 103-107). IEEE. https://doi.org/10.1109/PIMRC.2014.7136141
[14]. Kim, Y., Ji, H., Lee, H., Lee, J., Ng, B. L., & Zhang, J. (2013, June). Evolution beyond LTE-advanced with full dimension MIMO. In 2013 IEEE International Conference on Communications Workshops (ICC), (pp. 111-115). IEEE. https://doi.org/10.1109/ICCW.2013.6649211
[15]. Kumar, K. P., Rao, K. S., Sumanth, T., Rao, N. M., Kumar, R. A., & Harish, Y. (2013). Effect of feeding techniques on the radiation characteristics of patch antenna: Design and analysis. International Journal of Advanced Research in Computer and Communication Engineering, 2(2), 1276–1281.
[16]. Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186-195. https://doi.org/10.1109/MCOM.2014.6736761
[17]. Lee, J., Song, Y., Choi, E., & Park, J. (2015, October). mmWave cellular mobile communication for Giga Korea 5G project. In 2015 21st Asia-Pacific Conference on Communications (APCC), (pp. 179-183). IEEE. https://doi.org/10.1109/APCC.2015.7412507
[18]. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742-758. https://doi.org/10.1109/JSTSP.2014.2317671
[19]. MacCartney, G. R., Zhang, J., Nie, S., & Rappaport, T. S. (2013, December). Path loss models for 5G millimeter wave propagation channels in urban microcells. In 2013 IEEE Global Communications Conference (GLOBECOM), (pp. 3948-3953). IEEE. https://doi.org/10.1109/GLOCOM.2013.6831690
[20]. Mandal, A., Ghosal, A., Majumdar, A., Ghosh, A., Das, A., & Das, S.K. (2012). Analysis of feeding techniques of rectangular microstrip antenna. 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012), 26-31.
[21]. Mulla, M., Sohail, M., Ulusoy, A. H., Uyguroğlu, R., Rizaner, A., & Amca, H. (2021, June). A single user millimeter wave massive MIMO system using defected ground structure and metasurface antenna arrays. In 2021 29th Signal Processing and Communications Applications Conference (SIU), (pp. 1-4). IEEE. https://doi.org/10.1109/SIU53274.2021.9477798
[22]. Naik, A., & Naik, K. K. (2016, September). Microstrip antenna design for Digital celluar system. In 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), (pp. 1077-1079). IEEE. https://doi.org/10.1109/ICACDOT.2016.7877752
[23]. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., ... & Fallgren, M. (2014). Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Communications Magazine, 52(5), 26-35. https://doi.org/10.1109/MCOM.2014.6815890
[24]. Pozar, D. M. (1996). A review of aperture coupled microstrip antennas: History, operation, development, and applications. University of Massachusetts at Amherst, (pp. 1-9).
[25]. Rahayu, V., Yokokawa, K., Chen, Q., & Pramono, Y. H. (2014). 2D-DOA estimation of patch antenna array using USV-MUSIC algorithm. The Institute of Electronics Information and communication; IEICE Technical Report, 114(193), 51-54.
[26]. Rao, A. P., & Sarma, N. V. S. N. (2014). Adaptive beamforming algorithms for smart antenna systems. WSEAS Transaction on Communications, 13, 44-50.
[27]. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., ... & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335-349. https://doi.org/10.1109/ACCESS.2013.2260813
[28]. Ren, K., Ma, R., & Behdad, N. (2021). Performance- Enhancement of platform-based, hf direction-finding systems using dynamic mode selection. IEEE Open Journal of Antennas and Propagation, 2, 793-806. https://doi.org/10.1109/OJAP.2021.3095223
[29]. Roges, R., Malik, P. K., & Sharma, S. (2021, June). A compact CPW-fed log-periodic antenna for IoT applications. In 2021 International Conference on Communication, Control and Information Sciences (ICCISc), 1, 1-5. https://doi.org/10.1109/ICCISc52257.2021.9484975
[30]. Rowley, J. T., & Waterhouse, R. B. (1999). Performance of shorted microstrip patch antennas for mobile communications handsets at 1800 MHz. IEEE Transactions on Antennas and Propagation, 47(5), 815-822. https://doi.org/10.1109/8.774135
[31]. Sahoo, S. S., Hota, M. K., & Barik, K. K. (2014). 5G network a new look into the future: Beyond all generation networks. American Journal of Systems and Software, 2(4), 108-112. https://doi.org/10.12691/ajss-2-4-5
[32]. Salunke, D. B., & Kawitkar, R. S. (2013). Analysis of LMS, NLMS and MUSIC algorithms for adaptive array antenna system. International Journal of Engineering and Advanced Technology (IJEAT), 2(3), 130-133.
[33]. Senić, D., Živković, Z., Šimić, M., & Šarolić, A. (2014, September). Rectangular patch antenna: Design, wideband properties and loss tangent influence. In 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), (pp. 19-23). IEEE. https://doi.org/10.1109/SOFTCOM.2014.7039118
[34]. Seven, Z. S., & Can, S. (2021, June). Calculation of resonant frequency and bandwidth of rectangular microstrip antennas via genetic algorithm. In 2021 29th Signal Processing and Communications Applications Conference (SIU), (pp. 1-4). IEEE. https://doi.org/10.1109/SIU53274.2021.9478054
[35]. Sohail, M., & Uyguroğlu, R. (2021, June). Near field focused microstrip patch antenna array characteristics enhancement with parasitic patch elements. In 2021 29th Signal Processing and Communications Applications Conference (SIU), (pp. 1-4). IEEE. https://doi.org/10.1109/SIU53274.2021.9477974
[36]. Srivastava, S., Khandelwal, A., & Sharma, S. (2014). Microstrip patch antenna: A survey. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 9(4), 7-13.
[37]. Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52(9), 56-62. https://doi.org/10.1109/MCOM.2014.6894453
[38]. Wang, G., Zhao, P., Wang, L., & Wang, L. (2021). A two-dimensional direction finding method based on nonuniform array. IEEE Access, 9, 95335-95345. https://doi.org/10.1109/ACCESS.2021.3095065
[39]. Weigand, S., Huff, G. H., Pan, K. H., & Bernhard, J. T. (2003). Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas. IEEE Transactions on Antennas and Propagation, 51(3), 457-468. https://doi.org/10.1109/TAP.2003.809836
[40]. Zhang, D., Li, A., Pradhan, C., Li, J., Vucetic, B., & Li, Y. (2021). Training beam sequence design for multiuser millimeter wave tracking systems. IEEE Transactions on Communications, 69(10), 6939-6955. https://doi.org/10.1109/TCOMM.2021.3096543
[41]. Zhong, S. S., Yang, X. X., Gao, S. C., & Cui, J. H. (2002). Corner-fed microstrip antenna element and arrays for dual-polarization operation. IEEE Transactions on Antennas and Propagation, 50(10), 1473-1480. https://doi.org/10.1109/TAP.2002.801289
[42]. Zhou, P., Liu, Y., Zhao, H., Shi, Y., & Yin, X. (2021). Differentially fed dual-mode patch antenna with wideband common-mode absorption and its array application. IEEE Transactions on Antennas and Propagation, 69(12), 8937-8942. https://doi.org/10.1109/TAP.2021.3097438
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.