References
[1]. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S.,
Sidike, P., Nasrin, M. S., ...& Asari, V. K. (2019). A state-ofthe-
art survey on deep learning theory and architectures.
Electronics, 8(3), 292. https://doi.org/10.3390/electronics8030292
[2]. Autism and Developmental Disabilities Monitoring
Network Surveillance Year 2010 Principal Investigators.
(2014). Prevalence of autism spectrum disorder among
children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States,
2010. Morbidity and Mortality Weekly Report:
Surveillance Summaries, 63(2), 1-21.
[3]. Boutorh, A., & Guessoum, A. (2016). Complex
diseases SNP selection and classification by hybrid
association rule mining and artificial neural networkbased
evolutionary algorithms. Engineering Applications
of Artificial Intelligence, 51, 58-70. https://doi.org/10.1016/j.engappai.2016.01.004
[4]. Chang, C. Y., & Huang, Y. C. (2010, July). Personalized
facial expression recognition in indoor environments. In
the 2010, International Joint Conference on Neural
Networks (IJCNN), (pp. 1-8). IEEE. https://doi.org/10.1109/IJCNN.2010.5596316
[5]. Feng, X., Pietikainen, M., & Hadid, A. (2007). Facial
expression recognition based on local binary patterns.
Pattern Recognition and Image Analysis. 17, 592–598.
https://doi.org/10.1134/S1054661807040190
[6]. Fernández-Caballero, A., Martínez-Rodrigo, A.,
Pastor, J. M., Castillo, J. C., Lozano-Monasor, E., López, M.
T., ...& Fernández-Sotos, A. (2016). Smart environment
architecture for emotion detection and regulation.
Journal of Biomedical Informatics, 64, 55-73. https://doi.org/10.1016/j.jbi.2016.09.015
[7]. Gogić, I., Manhart, M., Pandžić, I. S., &Ahlberg, J.
(2020). Fast facial expression recognition using local
binary features and shallow neural networks. The Visual
Computer, 36(1), 97-112. https://doi.org/10.1007/s00371-018-1585-8
[8]. Goh, K. M., Ng, C. H., Lim, L. L., & Sheikh, U. U. (2020).
Micro-expression recognition: an updated review of
current trends, challenges and solutions. The Visual
Computer, 36(3), 445-468. https://doi.org/10.1007/s00371-018-1607-6
[9]. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S.
(2020). A survey of the recent architectures of deep
convolutional neural networks. Artificial Intelligence
Review, 53(8), 5455-5516. https://doi.org/10.1007/s10462-020-09825-6
[10]. Ko, B. C. (2018). A brief review of facial emotion
recognition based on visual information. Sensors, 18(2), 401. https://doi.org/10.3390/s18020401
[11]. Lee, C. C., Shih, C. Y., Lai, W. P., & Lin, P. C. (2012). An
improved boosting algorithm and its application to facial
emotion recognition. Journal of Ambient Intelligence
and Humanized Computing, 3(1), 11-17. https://doi.org/10.1007/s12652-011-0085-8
[12]. Liew, C. F., & Yairi, T. (2015). Facial expression
recognition and analysis: a comparison study of feature
descriptors. IPSJ Transactions on Computer Vision and
Applications, 7, 104-120. https://doi.org/10.2197/ipsjtcva.7.104
[13]. Lin, C. H. (2016). Novel application of continuously
variable transmission system using composite recurrent
Laguerre orthogonal polynomials modified PSO NN
control system. ISA Transactions, 64, 405-417. https://doi.org/10.1016/j.isatra.2016.05.013
[14]. Liu, M., Li, S., Shan, S., & Chen, X. (2015). Au-inspired
deep networks for facial expression feature learning.
Neurocomputing, 159, 126-136. https://doi.org/10.1016/j.neucom.2015.02.011
[15]. Lucey, P., Cohn, J. F., Kanade, T., Saragih, J.,
Ambadar, Z., & Matthews, I. (2010, June). The extended
cohn-kanade dataset (ck+): A complete dataset for
action unit and emotion-specified expression. In 2010
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition-Workshops, (pp. 94-101). IEEE.
https://doi.org/10.1109/CVPRW.2010.5543262
[16]. Lyons, M. J., Budynek, J., & Akamatsu, S. (1999).
Automatic classification of single facial images. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 21(12), 1357-1362. https://doi.org/10.1109/34.817413
[17]. Matthews, I., & Baker, S. (2004). Active appearance
models revisited. International Journal of Computer
Vision, 60(2), 135-164. https://doi.org/10.1023/B:VISI.0000029666.37597.d3
[18]. Mayya, V., Pai, R. M., & Pai, M. M. (2016). Automatic
facial expression recognition using DCNN. Procedia
Computer Science, 93, 453-461. https://doi.org/10.1016/j.procs.2016.07.233
[19]. Mehrabian, A. (2008). Communication without words. In Communication Theory, (pp. 193-200). Routledge.
[20]. Mohammadi, M. R., Fatemizadeh, E., &Mahoor, M.
H. (2014). PCA-based dictionary building for accurate
facial expression recognition via sparse representation.
Journal of Visual Communication and Image
Representation, 25(5), 1082-1092. https://doi.org/10.1016/j.jvcir.2014.03.006
[21]. Mollahosseini, A., Chan, D., &Mahoor, M. H. (2016,
March). Going deeper in facial expression recognition
using deep neural networks. In 2016, IEEE Winter
Conference on Applications of Computer Vision (WACV),
(pp. 1-10). IEEE. https://doi.org/10.1109/WACV.2016.7477450
[22]. O'Toole, A. J., Harms, J., Snow, S. L., Hurst, D. R.,
Pappas, M. R., Ayyad, J. H., & Abdi, H. (2005). A video
database of moving faces and people. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(5), 812-816. https://doi.org/10.1109/TPAMI.2005.90
[23]. Sahu, M., & Dash, R. (2021). A survey on deep
learning: Convolution neural network (CNN). In Intelligent
and Cloud Computing, (pp. 317-325). Springer,
Singapore. https://doi.org/10.1007/978-981-15-6202-0_32
[24]. Sánchez, D., Melin, P., & Castillo, O. (2017).
Optimization of modular granular neural networks using a
firefly algorithm for human recognition. Engineering
Applications of Artificial Intelligence, 64, 172-186. https://doi.org/10.1016/j.engappai.2017.06.007
[25]. Shan, C., Gong, S., & McOwan, P. W. (2009). Facial
expression recognition based on local binary patterns: A
comprehensive study. Image and Vision Computing,
27(6), 803-816. https://doi.org/10.1016/j.imavis.2008.08.005
[26]. Shih, F. Y., Chuang, C. F., & Wang, P. S. (2008).
Per formance comparisons of facial expression
recognition in JAFFE database. International Journal of
Pattern Recognition and Artificial Intelligence, 22(3), 445-459. https://doi.org/10.1142/S0218001408006284
[27]. Sreedharan, N. P. N., Ganesan, B., Raveendran, R.,
Sarala, P., Dennis, B., &Boothalingam R, R. (2018). Grey wolf optimisation based feature selection and
classification for facial emotion recognition. IET
Biometrics, 7(5), 490-499. https://doi.org/10.1049/ietbmt.2017.0160
[28]. Suja, P. S., & Tripathi, S. (2016, February). Real-time
emotion recognition from facial images using Raspberry
Pi II. In 2016, 3rd International Conference on Signal
Processing and Integrated Networks (SPIN), (pp. 666-670). IEEE. https://doi.org/10.1109/SPIN.2016.7566780
[29]. Thonse, U., Behere, R. V., Praharaj, S. K., & Sharma, P.
S. V. N. (2018). Facial emotion recognition, sociooccupational
functioning and expressed emotions in
schizophrenia versus bipolar disorder. Psychiatry
Research, 264, 354-360. https://doi.org/10.1016/j.psychres.2018.03.027
[30]. Wen, G., Hou, Z., Li, H., Li, D., Jiang, L., & Xun, E.
(2017). Ensemble of deep neural networks with
probability-based fusion for facial expression recognition.
Cognitive Computation, 9(5), 597-610. https://doi.org/10.1007/s12559-017-9472-6
[31]. Xiao-xu, Q. I., & Wei, J. (2007, April). Application of
wavelet energy feature in facial expression recognition. In
2007 International Workshop on Anti-Counterfeiting,
Security and Identification (ASID), (pp. 169-174). IEEE.
https://doi.org/10.1109/IWASID.2007.373720
[32]. Xie, S., & Hu, H. (2018). Facial expression recognition
using hierarchical features with deep comprehensive
multipatches aggregation convolutional neural networks.
IEEE Transactions on Multimedia, 21(1), 211-220.
https://doi.org/10.1109/TMM.2018.2844085
[33]. Yaddaden, Y., Bouzouane, A., Adda, M., &
Bouchard, B. (2016, June). A new approach of facial
expression recognition for ambient assisted living. In
Proceedings of the 9th ACM International Conference on
Pervasive Technologies Related to Assistive Environments,
(pp. 1-8). https://doi.org/10.1145/2910674.2910703
[34]. Yang, M., Liu, Y., & You, Z. (2017). The Euclidean
embedding learning based on convolutional neural
network for stereo matching. Neurocomputing, 267, 195-200. https://doi.org/10.1016/j.neucom.2017.06.007
[35]. Zhang, K., Huang, Y., Wu, H., & Wang, L. (2015,
November). Facial smile detection based on deep
learning features. In 2015, 3rd IAPR Asian Conference on
Pattern Recognition (ACPR), (pp. 534-538). IEEE. https://doi.org/10.1109/ACPR.2015.7486560
[36]. Zhao, L., Zhuang, G., & Xu, X. (2008, June). Facial
expression recognition based on PCA and NMF. In 2008 7th
World Congress on Intelligent Control and Automation,
(pp. 6826-6829). IEEE. https://doi.org/10.1109/WCICA.2008.4593968
[37]. Zhao, X., Shi, X., & Zhang, S. (2015). Facial
expression recognition via deep learning. IETE Technical
Review, 32(5), 347-355. https://doi.org/10.1080/02564602.2015.1017542
[38]. Zhi, R., & Ruan, Q. (2008). Facial expression
recognition based on two-dimensional discriminant
locality preserving projections. Neurocomputing, 71(7-9),
1730-1734. https://doi.org/10.1016/j.neucom.2007.12.002