Analytical Research on Optical Phase Shift Modulation Scheme with Maximum Modulation Efficiency for Analog and Digital Signals

Vikas Agrawal*, Koushik Basak**, Rajesh Kumar Bahl***
*-*** Space Applications Centre, Ahmedabad, Gujarat, India.
Periodicity:July - December'2022
DOI : https://doi.org/10.26634/jcs.11.2.19048

Abstract

This paper presents the analytical research and characterization of optical Binary Phase Shift Keying (BPSK) for single-tone sinusoidal and digital signals. The mathematical analysis and simulation for optimal modulation depth are proposed in this paper for maximum efficiency of the output modulated signal. The modulation depth is analysed with suitable Radio Frequency (RF) drive voltage for message signal and the effect of modulation depth on carrier suppression and higher order harmonics over fundamental tone is analysed theoretically and with simulation. To achieve phase modulation in this work, an external modulation technique via the Mach-Zehnder Modulator (MZM) is used, and an optical source using a narrow line width Distributed Feed Back (DFB) laser is used to minimise phase noise. The simulation and characterization results strongly support the mathematical analysis of the proposed criteria for suitable RF drive over half wave voltage for optimal detection and maximum message signal efficiency.

Keywords

External Modulation, DFB Laser, Mach Zehender Modulator (MZM), BPSK Modulation.

How to Cite this Article?

Agrawal, V., Basak, K., and Bahl, R. K. (2022). Analytical Research on Optical Phase Shift Modulation Scheme with Maximum Modulation Efficiency for Analog and Digital Signals. i-manager’s Journal on Communication Engineering and Systems, 11(2), 1-10. https://doi.org/10.26634/jcs.11.2.19048

References

[1]. Antoniades, N. N., Ellinas, G., & Roudas, I. (2012). WDM Systems and Networks: Modeling, Simulation, Design and Engineering. Springer, USA, (pp.373-386).
[2]. Dhawan, D., & Gupta, N. (2017). Investigation of tolerable laser linewidth for different modulation formats in CO-OFDM systems. Optics and Photonics Journal, 7(5), 92-100. https://doi.org/10.4236/opj.2017.75009
[3]. Franz, J. H., & Jain, V. K. (2000). Optical Communications Components and Systems, Narosa Publishing House, New Delhi, (pp. 401-502).
[4]. Gliese, U., Christensen, E. L., & Stubkjaer, K. E. (1991). Laser linewidth requirements and improvements for coherent optical beam forming networks in satellites. Journal of Lightwave Technology, 9(6), 779-790. https://doi.org/10.1109/50.81982
[5]. Gnauck, A. H., Darcie, T. E., & Bodeep, G. E. (1992). Comparison of direct and external modulation for CATV lightwave transmission at 1, 5μm wavelength. Electronics Letters, 28(20), 1875-1876.
[6]. Hisatake, S., Shimahashi, K., Kitahara, G., Morimoto, Y., Song, H. J., Ajito, K., & Nagatsuma, T. (2011, October). Homodyne detection of microwaves using lowtemperature- grown GaAs at 1.55 μm. In 2011 International Topical Meeting on Microwave Photonics jointly held with the 2011 Asia-Pacific Microwave Photonics Conference, (pp. 308-311). IEEE. https://doi.org/10.1109/MWP.2011.6088732
[7]. Hraghi, A. (2017). Application of Mach-Zehnder Modulator for High Speed Optical Communication Network. (Doctoral Dissertation, Ariana, Tunisia: GRESCOM laboratory, Engineering School of Communication of Tunis).
[8]. Kahn, J. M. (1989). 1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers. IEEE Photonics Technology Letters, 1(10), 340-342.
[9]. Kahn, J. M. (2006, June). Modulation and detection techniques for optical communication systems. In Coherent Optical Technologies and Applications (p. CThC1). Optica Publishing Group. https://doi.org/10.1364/COTA.2006.CThC1
[10]. Kikuchi, K. (2016). Fundamentals of coherent optical communications. Journal of Lightwave Technology, 34(1), 157-179. https://doi.org/10.1109/ JLT.2015.2463719
[11]. Li, T., Zhang, J., Yi, H., Tan, W., Long, Q., Zhou, Z., & Wu, H. (2013). Low-voltage, high speed, compact silicon modulator for BPSK modulation. Optics Express, 21(20), 23410-23415. https://doi.org/10.1364/OE.21.023410
[12]. Mizutori, A., Sugamoto, M., & Koga, M. (2012, September). 12.5-Gbit/s BPSK stable optical homodyne detection using 3-kHz spectral linewidth external-cavity laser diode. In 2012 38th European Conference and Exhibition on Optical Communications, (pp. 1-3). IEEE. https://doi.org/10.1364/ECEOC.2012.P3.13
[13]. Sackinger, E. (2005). Broadband Circuits for Optical Communication. John Wiley & Sons, Hoboken, New Jersey, (pp.234-257).
[14]. Singh, R. P., & Sapre, S. D. (2008). Communication Systems: Analog and Digital. Tata McGraw-Hill Publishing Company Limited, New Delhi, (pp.303-325).
[15]. Weerasuriya, R., Sygletos, S., Ibrahim, S. K., Gunning, F. C. G., Manning, R. J., Phelan, R., & Ellis, A. D. (2011). Comparison of frequency symmetric signal generation from a BPSK input using and semiconductorbased nonlinear elements. IEEE Photonics Technology Letters, 23(10), 651-653. https://doi.org/10.1109/LPT.2011.2121897
[16]. Yaakob, S., Mahmood, R. M., Zan, Z., Rashidi, C. B. M., Mahmud, A., & Anas, S. B. A. (2021, May). Modulation index and phase imbalance of dual-sideband optical carrier suppression (DSB-OCS) in optical millimeter-wave system. In Photonics, 8(5), 153. https://doi.org/10.3390/photonics8050153
[17] . Zeng, F., & Yao, J. (2005). Investigation of phasemodulator- based all-optical bandpass microwave filter. Journal of Lightwave Technology, 23(4), 1721-1728.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.