References
[1]. Banot, S., & Mahajan, P. M. (2016). A fruit detecting
and grading system based on image processing-review.
International Journal of Innovative Research in Electrical,
Electronics, Instrumentation and Control Engineering,
4(1), 47-51.
[2]. Patil, S. V., Jadhav, V. M., Dalvi, K. K., & Kulkarni, B. P.
(2020). Fruit Quality Detection using OpenCV/Python.
International Research Journal of Engineering and
Technology, 7(5), 6658-6660.
[3]. Kumar, G., & Bhatia, P. K. (2014, February). A detailed
review of feature extraction in image processing systems.
In 2014 Fourth International Conference on Advanced
Computing and Communication Technologies, 5-12,
IEEE. https://doi.org/10.1109/ACCT.2014.74
[4]. Muresan, H., & Oltean, M. (2018). Fruit recognition
from images using deep learning. arXiv preprint
arXiv:1712.00580, 10(1), 26-42. https://doi.org/10.48550/arXiv.1712.00580
[5]. Patel, H., Prajapati, R., & Patel, M. (2019, April).
Detection of quality in orange fruit image using SVM
classifier. In 2019, 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 74-78. IEEE. https://doi.org/10.1109/ICOEI.2019.8862758
[6]. Zeeshan, M., Prabhu, A., Arun, C., & Rani, N. S. (2020,
July). Fruit classification system using multiclass support
vector machine classifier. In 2020 International
Conference on Electronics and Sustainable
Communication Systems (ICESC), 289-294, IEEE. https://doi.org/10.1109/ICESC48915.2020.9155817
[7]. Nandhini, P., & Jaya, J. (2014). Image segmentation
for food quality evaluation using computer vision system.
International Journal of Engineering Research and
Applications, 4(2), 1-3.
[8]. Nie, M., Zhao, Q., Bi, S., Xu, Y., & Shen, T. (2019, July).
Apple external quality analysis based on BP neural
network. In 2019 1st International Conference on Industrial
Artificial Intelligence (IAI), 1-5, IEEE. https://doi.org/10.1109/ICIAI.2019.8850821
[9]. Devi, T. G., Neelamegam, P., & Sudha, S. (2017,
September). Image Processing System for Automatic
Segmentation and Yield Prediction of Fruits using Open
CV. In 2017 International Conference on Current Trends in
Computer, Electrical, Electronics and Communication
(CTCEEC), 758-762, IEEE. https://doi.org/10.1109/CTCEEC.2017.8455137
[10]. Huang, Y. P., Wang, T. H., & Basanta, H. (2020). Using
fuzzy mask R-CNN model to automatically identify tomato ripeness. IEEE Access, 8, 207672-207682. https://doi.org/10.1109/ACCESS.2020.3038184
[11]. Constante, P., Gordon, A., Chang, O., Pruna, E.,
Acuna, F., & Escobar, I. (2016). Artificial vision techniques
to optimize Strawberry's industrial classification. IEEE Latin
America Transactions, 14(6), 2576-2581. https://doi.org/10.1109/TLA.2016.7555221
[12]. Awate, A., Deshmankar, D., Amrutkar, G., Bagul, U.,
& Sonavane, S. (2015, October). Fruit disease detection
using color, texture analysis and ANN. In 2015
International Conference on Green Computing and
Internet of Things (ICGCIoT), 970-975, IEEE. https://doi.org/10.1109/ICGCIoT.2015.7380603
[13]. Satpute, M. R., & Jagdale, S. M. (2016, August).
Automatic fruit quality inspection system. In 2016
International Conference on Inventive Computation
Technologies (ICICT), 1, 1-4, IEEE. https://doi.org/10.1109/INVENTIVE.2016.7823207
[14]. Jadhav, R. S., & Patil, S. S. (2013). A fruit quality
management system based on image processing. IOSR
Journal of Electronics and Communication Engineering
(IOSR-JECE), 8(6), 01-05.
[15]. Kaggle. (n. d). Fruit Images for Object Detection.
Retrieved from https://www.kaggle.com/datasets/mbkinaci/fruit-images-for-object-detection