References
[1]. Agarwal, M., & Kudapa, V. K. (2022). Comparing the
performance of supercritical CO2 fracking with high
energy gas fracking in unconventional shale. MRS Energy
& Sustainability, 1-8. https://doi.org/10.1557/s43581-022-00043-x
[2]. Agee, M. A. (1997). Converting natural gas into
liquid fuels. Petroleum Technology Quarterly, Summer, 107-111.
[3]. Al-Tamimi, A. (2014, January). GTL Efficiency. In 2014,
International Petroleum Technology Conference, Article
cp-395. https://doi.org/10.3997/2214-4609-pdb.395.IPTC-17415-MS
[4]. Ansell, L. L., Gibson, A. N., Quinlan, C. W., & Fiato, R. A.
(2001). Advanced Gas Conversion Technology. In Global
GTL Summit (pp. 28-29).
[5]. Avidan, A., Silverman, A., & Siregar, P. (1997). Lowering
the costs of liquefied natural gas delivery: Impact of
technology. In Natural Gas, Reserves Environment
and Safety Business/Management Research and
Transportation-Fifteenth World Petroleum Congress, (pp.
124-133).
[6]. Carlsson, L., & Fabricius, N. (2005). From Bintulu Shell
MDS to Pearl GTL in Qatar. Retrieved from http://www.ivt.
ntnu.no/ept/fag/tep4215/innhold/LNG%20Conferences/2005/SDS_TIF/050139.pdf
[7]. Clarke, S. C. (1998). Managing the molecule – Refining
in the next millennium. In Foster Wheeler Technical Paper
(Vol. 9).
[8]. De Graaf, W., & Schrauwen, F. (2002). World scale GTL
[gas-to-liquids process]. Hydrocarbon Engineering, 7(5),
55-58.
[9]. El Missirie, A. A. (2000, April). Natural gas versus
conventional petroleum products: Technical, economical
and environmental comparison. In MOC 2000
Mediterranean Offshore Conference and Exhibition,
Alexandria (Egypt).
[10]. Heng, H. C., & Idrus, S. (2004). The future of gas to
liquids as a gas monetisation option. Journal of Natural
Gas Chemistry, 13(2), 63-70.
[11]. Howard, W., & Labouisse, F. (1998). Fischer-Tropsch
Technology. Rentech Corporation, Houston, Texas.
[12]. Kudapa, V. K. (2022). Carbon-dioxide capture,
storage and conversion techniques in different sectors–a
case study. International Journal of Coal Preparation and
Utilization, 1-26. https://doi.org/10.1080/19392699.2022.2119559
[13]. Kudapa, V. K., Iqbal, M. I., Memon, S., Azharuddin, S., & Rajawy, I. A. (2022). Production enhancement using
prosper software with reference to well test matching and
modeling for good financial management. Materials
Proceedings, 10(1), 7. https://doi.org/10.3390/materproc2022010007
[14]. Maitlis, P. M., & De Klerk, A. (2013). Greener Fischer-
Tropsch Processes for Fuels and Feedstocks. Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/9783527656837
[15]. Maitlis, P. M., & De Klerk, A. (2013). What is
Fischer–Tropsch? Greener Fischer-Tropsch Processes for
Fuels and Feedstocks, (pp. 1-15). https://doi.org/10.1002/9783527656837.ch1
[16]. Mohan, P. V. V., & Kudapa, V. K. (2021). Recent
developments in usage of fluorine-free nano structured
materials in oil-water separation: A review. Surfaces and
Interfaces, 27, Article 101455. https://doi.org/10.1016/j.surfin. 2021.101455
[17]. Perry, R., & Gee, I. (1993, October). Vehicle
emissions in relation to fuel consumption. In International
Conference on Volatile Organic Compounds in the
Environment (pp. 27-28).
[18]. Sousa-Aguiar, E. F., Noronha, F. B., & Faro, A. (2011).
The main catalytic challenges in GTL (gas-to-liquids)
processes. Catalysis Science & Technology, 1(5), 698-713. https://doi.org/10.1039/C1CY00116G
[19]. Steynberg, A. P. (2004). Introduction to Fischer-
Tropsch technology. In Studies in Surface Science and
Catalysis, 152, 1-63. https://doi.org/10.1016/S0167-2991(04)80458-0
[20]. Wakamura, O. (2005). Development of GTL (Gas to
Liquid) technology. Nippon Steel Technical Report (pp.
2-7), Article 92. 2-7.
[21]. Wood, D. A., Nwaoha, C., & Towler, B. F. (2012). Gasto-
liquids (GTL): A review of an industry offering several
routes for monetizing natural gas. Journal of Natural Gas
Science and Engineering, 9, 196-208. https://doi.org/10.1016/j.jngse.2012.07.001
[22]. Wright, H. A., Allison, J. D., Jack, D. S., Lewis, G. H., &
Landis, S. R. (2003, September). Conocophillips GTL
technology: The COPox process as the SynGas generator.
In Abstracts of Papers of the American Chemical Society
48, (pp. 791–792).