References
[1]. Ariketi, R., Behara, B. K., & Bhuni, U. K. (2015). Shale
gas in India: Opportunities and challenges. Internatıonal
Journal of Scıentıfıc Research, 4(3), 320-325.
[2]. Bhave, A. G., Conway, D., Dessai, S., & Stainforth, D.
A. (2018). Water resource planning under future climate
and socioeconomic uncertainty in the Cauvery River
Basin in Karnataka, India. Water Resources Research,
54(2), 708-728. https://doi.org/10.1002/2017WR020970
[3]. British Geological Survey. (n.d.). Shale Gas. BGS
Research. Retrieved from https://www.bgs.ac.uk/geology-projects/shale-gas/
[4]. Cancino, O. P. O., Pérez, D. P., Pozo, M., & Bessieres, D.
(2017). Adsorption of pure CO2 and a CO2/CH4 mixture on
a black shale sample: Manometry and microcalorimetry
measurements. Journal of Petroleum Science and
Engineering, 159, 307-313. https://doi.org/10.1016/j.petrol.2017.09.038
[5]. Chokshi, N. P., Shah, K. P., & Gangdev, B. P. (2014).
Shale gas-future scope & challenges. International
Journal of Latest Technology in Engineering,
Management & Applied Science, 3(1), 107-111.
[6]. Dong, D., Wang, Y., Li, X., Zou, C., Guan, Q., Zhang,
C., & Qiu, Z. (2016a). Breakthrough and prospect of shale
gas exploration and development in China. Natural Gas
Industry B, 3(1), 12-26. https://doi.org/10.1016/j.ngib.2016.02.002
[7]. Dong, D., Zou, C., Dai, J., Huang, S., Zheng, J., Gong,
J., & Qiu, Z. (2016b). Suggestions on the development
strategy of shale gas in China. Journal of Natural Gas
Geoscience, 1(6), 413-423. https://doi.org/10.1016/j.jnggs.2016.11.011
[8]. Du, F., & Nojabaei, B. (2019). A review of gas injection
in shale reser voirs: Enhanced oil/gas recover y
approaches and greenhouse gas control. Energies, 12(12), 2355. https://doi.org/10.3390/en12122355
[9]. Fathi, E., & Akkutlu, I. Y. (2014). Multi-component gas
transport and adsorption effects during CO2 injection and
enhanced shale gas recovery. International Journal of
Coal Geology, 123, 52-61. https://doi.org/10.1016/j.coal.2013.07.021
[10]. Fernandes, F. B., Campos, W., Braga, A. M. B.,
Siqueira, C. Y. S., Botelho, M. A. O., Rezende, F. H. G., &
Filho, A. C. S. (2019). Sensitivity analysis of the influence of
fracturings spacing in the construction of complex
fractures network for exploration and production of shale
gas/shale oil. Journal of Petroleum & Environmental
Biotechnology, 10(5), 397. https://doi.org/10.35248/2157-7463.19.10.397
[11]. Futurelearn. (n.d.). Global Shale Gas and Tight Oil
Production. Retrieved from https://www.futurelearn.com/info/courses/global-resource-politics/0/steps/29993
[12]. Ghosh, P. K., Bandyopadhyay, S., Jana, N. C., &
Mukhopadhyay, R. (2016). Sand quarrying activities in an
alluvial reach of Damodar River, Eastern India: Towards a
geomorphic assessment. International Journal of River
Basin Management, 14(4), 477-489. https://doi.org/10.1080/15715124.2016.1209509
[13]. Godec, M., Koperna, G., Petrusak, R., & Oudinot, A.
(2013). Potential for enhanced gas recovery and CO2
storage in the Marcellus Shale in the Eastern United States.
International Journal of Coal Geology, 118, 95-104.
https://doi.org/10.1016/j.coal.2013.05.007
[14]. Guiltinan, E. J., Cardenas, M. B., Bennett, P. C.,
Zhang, T., & Espinoza, D. N. (2017). The effect of organic
matter and thermal maturity on the wettability of
supercritical CO2 on organic shales. International Journal
of Greenhouse Gas Control, 65, 15-22. https://doi.org/10.1016/j.ijggc.2017.08.006
[15]. Hong, L., Jain, J., Romanov, V., Lopano, C.,
Disenhof, C., Goodman, A., & Dilmore, R. (2016). An
investigation of factors affecting the interaction of CO2
and CH4 on shale in Appalachian Basin. Journal of
Unconventional Oil and Gas Resources, 14, 99-112.
https://doi.org/10.1016/j.juogr.2016.02.003
[16]. Iddphonce, R., Wang, J., & Zhao, L. (2020). Review of CO2 injection techniques for enhanced shale gas
recovery: Prospect and challenges. Journal of Natural
Gas Science and Engineering, 77, 103240.
https://doi.org/10.1016/j.jngse.2020.103240
[17]. India Today. (2010, October 28). India Eyes US Tech
to Exploit Shale Gas. India Today. Retrieved from
https://www.indiatoday.in/business/india/story/india-eyesus-tech-to-exploit-shale-gas-84669-2010-10-27
[18]. Jain, T., Sharma, A., & Agarwal, A. (2012). Current
scenario and future prospects of shale gas in india.
Search and Discovery, Article 80276.
[19]. Jiang, J., & Younis, R. M. (2016). Compositional
modeling of enhanced hydrocarbons recovery for
fractured shale gas-condensate reservoirs with the
effects of capillary pressure and multicomponent
mechanisms. Journal of Natural Gas Science and
Engineering, 34, 1262-1275. https://doi.org/10.1016/j.jngse.2016.08.006
[20]. Koduru, A., & Mohanty, P. R. (2015). Application of
Post-stack migration to seismicdata associated with fault
structures. Open Geosciences, 7(1), 162–173.
http://doi.org/ 10.1515/geo-2015-0009
[21]. Köster, V. (2013). What is Shale Gas? How Does
Fracking Work? Retrieved from https://www.chemistry
views.org/details/education/1316813/What_is_Shale_Gas_How_Does_Fracking_Work/
[22]. Kuuskraa, V. A., Stevens, S. H., & Moodhe, K. (2013).
EIA/ARI World Shale Gas and Shale Oil Resource
Assessment. Arlington, VA and Washington, DC, 17, 14.
[23]. Le, M. T. (2018). An assessment of the potential for the
development of the shale gas industry in countries
outside of North America. Heliyon, 4(2), Article e00516.
https://doi.org/10.1016/j.heliyon.2018.e00516
[24]. Liu, B., Qi, C., Mai, T., Zhang, J., Zhan, K., Zhang, Z., &
He, J. (2018). Competitive adsorption and diffusion of
CH4/CO2 binar y mixture within shale organic
nanochannels. Journal of Natural Gas Science and
Engineering, 53, 329-336. https://doi.org/10.1016/j.jngse.2018.02.034
[25]. Lutynski, M., & González, M. Á. G. (2016).
Characteristics of carbon dioxide sorption in coal and gas shale–The effect of particle size. Journal of Natural Gas
Science and Engineering, 28, 558-565. https://doi.org/10.1016/j.jngse.2015.12.037
[26]. Jasionowski, M. (n.d.). Mineralogy of Shale Rocks.
Retrieved from https://infolupki.pgi.gov.pl/en/gas/mineralogy-shale-rocks
[27]. Misra, R. (2008). Shale gas exploration in India:
opportunities and challenges. In GEO India Expo XXI,
India. Retrieved from https://www.searchanddiscovery.com/abstracts/html/2008/geo_india/abstracts/misra.htm
[28]. Nakano, J., Pumphrey, D., Price, R., & Walton, M. A.
(2012). Prospects for shale gas development in Asia.
[Report] Center for Strategic and International Studies,
DC: Washington.
[29]. Pan, Y., Hui, D., Luo, P., Zhang, Y., Zhang, L., & Sun, L.
(2018). Influences of subcritical and supercritical CO2
treatment on the pore structure characteristics of marine
and terrestrial shales. Journal of CO2 Utilization, 28, 152-167. https://doi.org/10.1016/j.jcou.2018.09.016
[30]. Kher, S. (2010). Indian Sedimentary Basins and Shale
Gas. Retrieved from http://suvratk.blogspot.com/2010/07/indian-sedimentary-basins-and-shale-gas.html
[31]. Rezaee, R., Saeedi, A., Iglauer, S., & Evans, B.
(2017). Shale alteration after exposure to supercritical
CO2. International Journal of Greenhouse Gas Control,
62, 91-99. https://doi.org/10.1016/j.ijggc.2017.04.004
[32]. U.S. Energy Information Administration. (2013).
Technically Recoverable Shale Oil and Shale Gas
Resources: An Assessment of 137 Shale Formations in 41
Countries outside the United States. Retrieved from
https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf
[33]. Wan, T., & Mu, Z. (2018). The use of numerical
simulation to investigate the enhanced Eagle Ford shale
gas condensate well recovery using cyclic CO2 injection
method with nano-pore effect. Fuel, 233, 123-132.
https://doi.org/10.1016/j.fuel.2018.06.037
[34]. Wang, M., Huang, K., Xie, W., & Dai, X. (2019).
Current research into the use of supercritical CO2 technology in shale gas exploitation. International
Journal of Mining Science and Technology, 29(5), 739-744. https://doi.org/10.1016/j.ijmst.2018.05.017
[35]. Wang, T., Tian, S., Li, G., & Sheng, M. (2018).
Selective adsorption of supercritical carbon dioxide and
methane binary mixture in shale kerogen nanopores.
Journal of Natural Gas Science and Engineering, 50, 181-188. https://doi.org/10.1016/j.jngse.2017.12.002
[36]. Wei, Y., Jia, A., Wang, J., Qi, Y., & Jia, C. (2018).
Current technologies and prospects of shale gas
development in China. Shale Gas-New Aspects and
Technologies. https://doi.org/10.5772/intechopen.76054
[37]. Whitelaw, P., Uguna, C. N., Stevens, L. A., Meredith,
W., Snape, C. E., Vane, C. H., & Carr, A. D. (2019). Shale
gas reserve evaluation by laboratory pyrolysis and gas
holding capacity consistent with field data. Nature
Communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-11653-4
[38]. Wu, M., Ding, M., Yao, J., Li, C., Li, X., & Zhu, J. (2019).
Development of a multi-continuum quadruple porosity
model to estimate CO2 storage capacity and CO2
enhanced shale gas recovery. Journal of Petroleum
Science and Engineering, 178, 964-974. https://doi.org/10.1016/j.petrol.2019.03.077
[39]. Xin-gang, Z., & Ya-hui, Y. (2015). The current situation
of shale gas in Sichuan, China. Renewable and
Sustainable Energy Reviews, 50, 653-664. https://doi.org/10.1016/j.rser.2015.05.023
[40]. Xu, R., Zeng, K., Zhang, C., & Jiang, P. (2017).
Assessing the feasibility and CO2 storage capacity of CO2
enhanced shale gas recovery using Triple-Porosity
reservoir model. Applied Thermal Engineering, 115,
1306-1314. https://doi.org/10.1016/j.applthermaleng.2017.01.062
[41]. Zadeh, N. S., & Talebi, S. (2018). An overview of new
developments in shale gas: Induced seismicity aspect. In
Ali Al-Juboury (Ed.) Shale Gas: New Aspects and
Technologies, (pp. 1-18). https://doi.org/10.5772/intechopen.76542