References
[1]. Akila, S., & Reddy, U. S. (2017, November). Risk based
bagged ensemble (RBE) for credit card fraud detection. In 2017, International Conference on Inventive
Computing and Informatics (ICICI), (pp. 670-674). IEEE.
https://doi.org/10.1109/ICICI.2017.8365220
[2]. Bahnsen, A. C., Aouada, D., Stojanovic, A., Ottersten,
B. (2016). Feature engineering strategies for credit card
fraud detection. Expert Systems with Applications,
134–142. https://doi.org/10.1016/j.eswa.2015.12.030
[3]. Bolton, R. J., & Hand, D. J. (2002). Statistical fraud
detection: A review. Statistical Science, 17(3), 235-255.
https://doi.org/10.1214/ss/1042727940
[4]. Cody, T., Adams, S., & Beling, P. A. (2018, April). A
utilitarian approach to adversarial learning in credit card
fraud detection. In 2018, Systems and Information
Engineering Design Symposium (SIEDS), (pp. 237-242).
IEEE. https://doi.org/10.1109/SIEDS.2018.8374743
[5]. Krivko, M. (2010). A hybrid model for plastic card fraud
detection systems. Expert Systems with Applications,
37(8), 6070-6076. https://doi.org/10.1016/j.eswa.2010.02.119
[6]. Melo-Acosta, G. E., Duitama-Munoz, F., & Arias-
Londono, J. D. (2017, August). Fraud detection in big
data using supervised and semi-supervised learning
techniques. In 2017, IEEE Colombian Conference on
Communications and Computing (COLCOM), (pp. 1-6).
IEEE. https://doi.org/10.1109/ColComCon.2017.8088206
[7]. Pozzolo, A. D., Boracchi, G., Caelen, O., Alippi, C., &
Bontempi, G. (2017). Credit card fraud detection: A
realistic modeling and a novel learning strategy. IEEE
Transactions on Neural Networks and Learning Systems,
29(8), 3784-3797. https://doi.org/10.1109/TNNLS.2017.2736643
[8]. Rafalo, M. (2017). Real-Time Fraud Detection in
Credit Card Transactions. Retrieved from https://www.slideshare.net/mrafalo/realtime-fraud-detection-incredit-card-transactions
[9]. Randhawa, K., Loo, C. K., Seera, M., Lim, C. P., &
Nandi, A. K. (2018). Credit card fraud detection using
adaboost and majority voting. IEEE Access, 6, 14277-14284. https://doi.org/10.1109/ACCESS.2018.2806420
[10]. Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., &
Beling, P. (2018, April). Deep learning detecting fraud in
credit card transactions. In 2018, Systems and
Information Engineering Design Symposium (SIEDS), (pp. 129-134). IEEE. https://doi.org/10.1109/SIEDS.2018.8374722
[11]. Saha, S. (2018). A Comprehensive Guide to
Convolutional Neural Networks-the ELI5 Way. Retrieved
from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
[12]. Sorournejad, S., Zojaji, Z., Atani, R. E., & Monadjemi,
A. H. (2016). A survey of credit card fraud detection
techniques: data and technique oriented perspective.
ArXiv, abs/1611.06439, (pp. 1-26). https://doi.org/10.48550/arXiv.1611.06439
[13]. West, J. & Bhattacharya, M. (2016). Some
experimental issues in financial fraud mining. Procedia
Computer Science, 80, 1734-1744. https://doi.org/10.1016/j.procs.2016.05.515
[14]. Zareapoor, M., Seeja, K. R., & Alam, M. A. (2012).
Analysis on credit card fraud detection techniques: Based
on certain design criteria. International Journal of
Computer Applications, 52(3), 35-42. https://doi.org/10.5120/8184-1538
[15]. Zeager, M. F., Sridhar, A., Fogal, N., Adams, S.,
Brown, D. E., & Beling, P. A. (2017, April). Adversarial
learning in credit card fraud detection. In 2017, Systems
and Information Engineering Design Symposium (SIEDS),
(pp. 112-116). IEEE. https://doi.org/10.1109/SIEDS.2017.7937699