References
[1]. Aamir, M., Ali, T., Shaf, A., Irfan, M., & Saleem, M. Q.
(2020). ML-DCNNet: multi-level deep convolutional
neural network for facial expression recognition and
intensity estimation. Arabian Journal for Science and
Engineering, 45(12), 10605-10620. https://doi.org/10.1007/s13369-020-04811-0
[2]. Abidin, Z., & Harjoko, A. (2012). A neural network based facial expression recognition using fisherface.
International Journal of Computer Applications, 59(3),
30-34.
[3]. Altameem, T., & Altameem, A. (2020). Facial
expression recognition using human machine interaction
and multi-modal visualization analysis for healthcare
applications. Image and Vision Computing, 103,
104044. https://doi.org/10.1016/j.imavis.2020.104044
[4]. Arora, M., Kumar, M., & Garg, N. K. (2018). Facial
emotion recognition system based on PCA and gradient
features. National Academy Science Letters, 41(6), 365-368. https://doi.org/10.1007/s40009-018-0694-2
[5]. Ashir, A. M., Eleyan, A., & Akdemir, B. (2020). Facial
expression recognition with dynamic cascaded classifier.
Neural Computing and Applications, 32(10), 6295-6309.
https://doi.org/10.1007/s00521-019-04138-4
[6]. Bougourzi, F., Dornaika, F., Mokrani, K., Taleb-Ahmed,
A., & Ruichek, Y. (2020). Fusing transformed deep and
shallow features (FTDS) for image-based facial expression
recognition. Expert Systems with Applications, 156,
113459. https://doi.org/10.1016/j.eswa.2020.113459
[7]. Boutorh, A., & Guessoum, A. (2016). Complex
diseases SNP selection and classification by hybrid
association rule mining and artificial neural
network—based evolutionary algorithms. Engineering
Applications of Artificial Intelligence, 51, 58-70.
https://doi.org/10.1016/j.engappai.2016.01.004
[8]. Cai, Y., Guo, Y., Jiang, H., & Huang, M. C. (2018).
Machine-learning approaches for recognizing muscle
activities involved in facial expressions captured by multichannels
surface electromyogram. Smart Health, 5, 15-25. https://doi.org/10.1016/j.smhl.2017.11.002
[9]. Han, S., Meng, Z., Khan, A. S., & Tong, Y. (2016).
Incremental boosting convolutional neural network for
facial action unit recognition. Advances in Neural
Information Processing Systems, 29.
[10]. Happy, S. L., & Routray, A. (2014). Automatic facial
expression recognition using features of salient facial
patches. IEEE Transactions on Affective Computing, 6(1),
1-12. https://doi.org/10.1109/TAFFC.2014.2386334
[11]. Happy, S. L., Dantcheva, A., & Bremond, F. (2019). A Weakly Supervised learning technique for classifying
facial expressions. Pattern Recognition Letters, 128, 162-168. https://doi.org/10.1016/j.patrec.2019.08.025
[12]. Janu, N., Mathur, P., Gupta, S. K., & Agrwal, S. L.
(2017, January). Performance analysis of frequency
domain based feature extraction techniques for facial
expression recognition. In 2017 7th International
Conference on Cloud Computing, Data Science &
Engineering-Confluence, (pp. 591-594). https://doi.org/10.1109/CONFLUENCE.2017.7943220
[13]. Jian, J. I. A. O., Jun, L. I. N., Xiao-hua, Z. H. O. U., &
Hao, L. U. (2011). Inversion of neural network Rayleigh
wave dispersion based on LM algorithm. Procedia
Engineering, 15, 5126-5132. https://doi.org/10.1016/j.proeng.2011.08.951
[14]. Jung, H., Lee, S., Yim, J., Park, S., & Kim, J. (2015).
Joint fine-tuning in deep neural networks for facial
expression recognition. In Proceedings of the IEEE
International Conference on Computer Vision, (pp. 2983-2991).
[15]. Kas, M., Ruichek, Y., & Messoussi, R. (2021). New
framework for person-independent facial expression
recognition combining textural and shape analysis
through new feature extraction approach. Information
Sciences, 549, 200-220. https://doi.org/10.1016/j.ins.2020.10.065
[16]. Kobayashi, M. (2017). Gradient descent learning for
quaternionic Hopfield neural networks. Neurocomputing,
260, 174-179. https://doi.org/10.1016/j.neucom.2017.04.025
[17]. Kumar, P., Roy, P. P., & Dogra, D. P. (2018).
Independent bayesian classifier combination based sign
language recognition using facial expression.
Information Sciences, 428, 30-48. https://doi.org/10.1016/j.ins.2017.10.046
[18]. Kurup, A. R., Ajith, M., & Ramón, M. M. (2019). Semisupervised
facial expression recognition using reduced
spatial features and deep belief networks.
Neurocomputing, 367, 188-197. https://doi.org/10.1016/j.neucom.2019.08.029
[19]. Lekdioui, K., Messoussi, R., Ruichek, Y., Chaabi, Y., & Touahni, R. (2017). Facial decomposition for expression
recognition using texture/shape descriptors and SVM
classifier. Signal Processing: Image Communication, 58,
300-312. https://doi.org/10.1016/j.image.2017.08.001
[20]. Li, H., & Xu, H. (2020). Deep reinforcement learning
for robust emotional classification in facial expression
recognition. Knowledge-Based Systems, 204, 106172.
https://doi.org/10.1016/j.knosys.2020.106172
[21]. Li, J., Jin, K., Zhou, D., Kubota, N., & Ju, Z. (2020).
Attention mechanism-based CNN for facial expression
recognition. Neurocomputing, 411, 340-350. https://doi.org/10.1016/j.neucom.2020.06.014
[22]. Li, Z., Wang, C., Liu, X., & Wang, Y. (2021). Facial
expression description and recognition based on fuzzy
semantic concepts. Future Generation Computer
Systems, 114, 619-628. https://doi.org/10.1016/j.future.2020.08.034
[23]. Lin, C. H. (2016). Novel application of continuously
variable transmission system using composite recurrent
Laguerre orthogonal polynomials modified PSO NN
control system. ISA Transactions, 64, 405-417. https://doi.org/10.1016/j.isatra.2016.05.013
[24]. Liu, M., Li, S., Shan, S., Wang, R., & Chen, X. (2014,
November). Deeply learning deformable facial action
parts model for dynamic expression analysis. In Asian
Conference on Computer Vision, 9006, 143-157.
https://doi.org/10.1007/978-3-319-16817-3_10
[25]. Liu, Y., Yuan, X., Gong, X., Xie, Z., Fang, F., & Luo, Z.
(2018). Conditional convolution neural network
enhanced random forest for facial expression
recognition. Pattern Recognition, 84, 251-261.
https://doi.org/10.1016/j.patcog.2018.07.016
[26]. Mehendale, N. (2020). Facial emotion recognition
using convolutional neural networks (FERC). SN Applied
Sciences, 2(3), 1-8. https://doi.org/10.1007/s42452-020-2234-1
[27]. Meng, Z., Liu, P., Cai, J., Han, S., & Tong, Y. (2017,
May). Identity-aware convolutional neural network for
facial expression recognition. In 2017 12th IEEE
International Conference on Automatic Face & Gesture
Recognition (FG 2017), (pp. 558-565). https://doi.org/10.1109/FG.2017.140
[28]. Minaee, S., Minaei, M., & Abdolrashidi, A. (2021).
Deep-emotion: Facial expression recognition using
attentional convolutional network. Sensors, 21(9), 3046.
https://doi.org/10.3390/s21093046
[29]. Mlakar, U., Fister, I., Brest, J., & Potočnik, B. (2017).
Multi-objective differential evolution for feature selection
in facial expression recognition systems. Expert Systems
with Applications, 89, 129-137. https://doi.org/10.1016/j.eswa.2017.07.037
[30]. Mollahosseini, A., Chan, D., & Mahoor, M. H. (2016,
March). Going deeper in facial expression recognition
using deep neural networks. In 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV),
(pp. 1-10). https://doi.org/10.1109/WACV.2016.7477450
[31]. Niu, B., Gao, Z., & Guo, B. (2021). Facial expression
recognition with LBP and ORB features. Computational
Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/8828245
[32]. Pentz, E. (2008). DOIs and PubMed Central - why no
links? Retrieved from https://www.crossref.org/categories/pubmed/
[33]. Rescigno, M., Spezialetti, M., & Rossi, S. (2020).
Personalized models for facial emotion recognition
through transfer learning. Multimedia Tools and
Applications, 79(47), 35811-35828. https://doi.org/10.1007/s11042-020-09405-4
[34]. Revina, I. M., & Emmanuel, W. S. (2019). Face
expression recognition with the optimization based multi-
SVNN classifier and the modified LDP features. Journal of
Visual Communication and Image Representation, 62,
43-55. https://doi.org/10.1016/j.jvcir.2019.04.013
[35]. Rifai, S., Bengio, Y., Courville, A., Vincent, P., & Mirza,
M. (2012, October). Disentangling factors of variation for
facial expression recognition. In European Conference
on Computer Vision, 7577, 808-822. https://doi.org/10.1007/978-3-642-33783-3_58
[36]. Sánchez, D., Melin, P., & Castillo, O. (2017).
Optimization of modular granular neural networks using a
firefly algorithm for human recognition. Engineering
Applications of Artificial Intelligence, 64, 172-186. https://doi.org/10.1016/j.engappai.2017.06.007
[37]. Shao, J., & Cheng, Q. (2021). E-FCNN for tiny facial
expression recognition. Applied Intelligence, 51(1), 549-559. https://doi.org/10.1007/s10489-020-01855-5
[38]. Singh, A., Khan, M. A., & Baghel, N. (2020, February).
Face emotion identification by fusing neural network and
texture features: facial expression. In 2020 International
Conference on Contemporary Computing and
Applications (IC3A), (pp. 187-190). IEEE. https://doi.org/10.1109/IC3A48958.2020.233294
[39]. Sreedharan, N. P. N., Ganesan, B., Raveendran, R.,
Sarala, P., Dennis, B., & Boothalingam R, R. (2018). Grey
wolf optimisation based feature selection and
classification for facial emotion recognition. IET
Biometrics, 7(5), 490-499. https://doi.org/10.1049/ietbmt.2017.0160
[40]. Sun, X., Xia, P., & Ren, F. (2021). Multi-attention based
deep neural network with hybrid features for dynamic
sequential facial expression recognition.
Neurocomputing, 444, 378-389. https://doi.org/10.1016/j.neucom.2019.11.127
[41]. Wang, H., Wei, S., & Fang, B. (2020). Facial
expression recognition using iterative fusion of MO-HOG
and deep features. The Journal of Supercomputing,
76(5), 3211-3221. https://doi.org/10.1007/s11227-018-2554-8
[42]. Wang, S., Yuan, Y., Zheng, X., & Lu, X. (2021). Local
and correlation attention learning for subtle facial
expression recognition. Neurocomputing, 453, 742-753.
https://doi.org/10.1016/j.neucom.2020.07.120
[43]. Wang, X. H., Liu, A., & Zhang, S. Q. (2015). New facial
expression recognition based on FSVM and KNN. Optik,
126(21), 3132-3134. https://doi.org/10.1016/j.ijleo.2015.07.073
[44]. Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The
influence of the activation function in a convolution
neural network model of facial expression recognition.
Applied Sciences, 10(5), 1897. https://doi.org/10.3390/app10051897
[45]. Yang, M., Liu, Y., & You, Z. (2017). The Euclidean
embedding learning based on convolutional neural network for stereo matching. Neurocomputing, 267, 195-200. https://doi.org/10.1016/j.neucom.2017.06.007
[46]. Zhang, T., Zheng, W., Cui, Z., Zong, Y., & Li, Y. (2018).
Spatial–temporal recurrent neural network for emotion
recognition. IEEE Transactions on Cybernetics, 49(3), 839-847. https://doi.org/10.1109/TCYB.2017.2788081
[47]. Zhao, X., Liang, X., Liu, L., Li, T., Han, Y., Vasconcelos,
N., & Yan, S. (2016, October). Peak-piloted deep network
for facial expression recognition. In European
Conference on Computer Vision, 425-442. https://doi.org/10.1007/978-3-319-46475-6_27
[48]. Zheng, H., Wang, R., Ji, W., Zong, M., Wong, W. K.,
Lai, Z., & Lv, H. (2020). Discriminative deep multi-task
learning for facial expression recognition. Information
Sciences, 533, 60-71. https://doi.org/10.1016/j.ins.2020.04.041
[49]. Zhou, L., Liu, M., Ye, B., Wang, X., & Liu, Q. (2021).
Sad expressions during encoding enhance facial identity
recognition in visual working memory in depression:
behavioural and electrophysiological evidence. Journal
of Affective Disorders, 279, 630-639. https://doi.org/10.1016/j.jad.2020.10.050