References
[1]. Adel, M., Ahmed, M. A., & Mohamed, A. A. (2021).
Effective removal of indigo carmine dye from waste
waters by adsorption onto mesoporous magnesium
ferrite nanoparticles. Environmental Nanotechnology,
Monitoring & Management, 16, 100550. https://doi.org/10.1016/j.enmm.2021.100550
[2]. Aichour, A., Zaghouane-Boudiaf, H., & Khodja, H. D.
(2022). Highly removal of anionic dye from aqueous
medium using a promising biochar derived from date
palm petioles: Characterization, adsorption properties
and reuse studies. Arabian Journal of Chemistry, 15(1),
103542. https://doi.org/10.1016/j.arabjc.2021.103542
[3]. Beltrán-Heredia, J., Sánchez-Martín, J., & Delgado-
Regalado, A. (2009). Removal of carmine indigo dye with
Moringa oleifera seed extract. Industrial & Engineering
Chemistry Research, 48(14), 6512-6520. https://doi.org/10.1021/ie9004833
[4]. Bhowmik, S., Chakraborty, V., & Das, P. (2021). Batch
adsorption of indigo carmine on activated carbon
prepared from sawdust: a comparative study and
optimization of operating conditions using response
surface methodology. Results in Surfaces and Interfaces,
3, 100011. https://doi.org/10.1016/j.rsurfi.2021.100011
[5]. El-Kammah, M., Elkhatib, E., Gouveia, S., Cameselle,
C., & Aboukila, E. (2022). Cost-effective ecofriendly
nanoparticles for rapid and efficient indigo carmine dye
removal from wastewater: Adsorption equilibrium, kinetics
and mechanism. Environmental Technology &
Innovation, 28, 102595. https://doi.org/10.1016/j.eti.2022.102595
[6]. Harrache, Z., Abbas, M., Aksil, T., & Trari, M. (2019).
Thermodynamic and kinetics studies on adsorption of
Indigo Carmine from aqueous solution by activated
carbon. Microchemical Journal, 144, 180-189. https://doi.org/10.1016/j.microc.2018.09.004
[7]. Hosseini, F., Sadighian, S., Hosseini-Monfared, H., &
Mahmoodi, N. M. (2016). Dye removal and kinetics of
adsorption by magnetic chitosan nanoparticles.
Desalination and Water Treatment, 57(51), 24378-24386.
https://doi.org/10.1080/19443994.2016.1143879
[8]. Kapoor, A., & Yang, R. T. (1989). Correlation of
equilibrium adsorption data of condensible vapours on
porous adsorbents. Gas Separation & Purification, 3(4),
187-192. https://doi.org/10.1016/0950-4214(89)80004-0
[9]. Kavitha, G., Subhapriya, P., Dhanapal, V.,
Dineshkumar, G., & Venkateswaran, V. (2021). Dye
removal kinetics and adsorption studies of activated
carbon derived from the stems of Phyllanthus reticulatus.
Materials Today: Proceedings, 45, 7934-7938. https://doi.org/10.1016/j.matpr.2020.12.837
[10]. Kekes, T., & Tzia, C. (2020). Adsorption of indigo carmine on functional chitosan and β -
cyclodextrin/chitosan beads: Equilibrium, kinetics and
mechanism studies. Journal of Environmental
Management, 262, 110372. https://doi.org/10.1016/j.jenvman.2020.110372
[11]. Kesraoui, A., Selmi, T., Seffen, M., & Brouers, F. (2017).
Influence of alternating current on the adsorption of
indigo carmine. Environmental Science and Pollution
Research, 24(11), 9940-9950. https://doi.org/10.1007/s11356-016-7201-4
[12]. Qian, F., Sun, X., & Liu, Y. (2013). Removal
characteristics of organics in bio-treated textile
wastewater reclamation by a stepwise coagulation and
intermediate GAC/O3 oxidation process. Chemical
Engineering Journal, 214, 112-118. https://doi.org/10.1016/j.cej.2012.09.130
[13]. Saxena, M., Sharma, N., & Saxena, R. (2020). Highly
efficient and rapid removal of a toxic dye: adsorption
kinetics, isotherm, and mechanism studies on
functionalized multiwalled carbon nanotubes. Surfaces
and Interfaces, 21, 100639. https://doi.org/10.1016/j.surfin.2020.100639
[14]. Tahira, I., Aslam, Z., Abbas, A., Monim-ul-Mehboob,
M., Ali, S., & Asghar, A. (2019). Adsorptive removal of
acidic dye onto grafted chitosan: A plausible grafting
and adsorption mechanism. International Journal of
Biological Macromolecules, 136, 1209-1218. https://doi.org/10.1016/j.ijbiomac.2019.06.173
[15]. Vigneshwaran, S., Sirajudheen, P., Karthikeyan, P., &
Meenakshi, S. (2021). Fabrication of sulfur-doped
biochar derived from tapioca peel waste with superior
adsorption performance for the removal of Malachite
green and Rhodamine B dyes. Surfaces and Interfaces,
23, 100920. https://doi.org/10.1016/j.surfin.2020.100920