References
[1]. Mehrdad, A., Hossein, J., Gholamreza, K., & Mansour,
K. (2010). A prediction to the best artificial lift method
selection on the basis of TOPSIS model. Journal of
Petroleum and Gas Engineering, 1(1), 009-015.
[2]. Ballarini, M., Bruni, M., Muñoz, H., Colla, M., Teves, R.,
Cruz Pirez, J., ... & Fleitas, D. (2017, April). High efficiency
ESP applications for slim wells. In SPE Electric Submersible
Pump Symposium. OnePetro. https://doi.org/10.2118/185137-MS
[3]. Bezerra, M. A., Schnitman, L., Barreto Filho, M. D. A.,
Jose, A. M., & de Souza, F. (2009, May). Pattern
Recognition for Downhole Dynamometer Card in Oil Rod
Pump System Using Artificial Neural Networks. In ICEIS (2) (pp. 351-355).
[4]. Bianchini, A., Rossi, J., & Antipodi, L. (2018). A
procedure for condition-based maintenance and
diagnostics of submersible well pumps through vibration
monitoring. International Journal of System Assurance
Engineering and Management, 9(5), 999-1013. https://doi.org/10.1007/s13198-018-0711-3
[5]. Brantly, J. E. (1961). History of petroleum engineering.
Boyed Printing Co., American Petroleum Institute, Dallas,
Texas, USA, (pp. 133-269).
[6]. Brown, K. E. (1982). Overview of artificial lift systems.
Journal of Petroleum Technology, 34(10), 2384-2396.
https://doi.org/10.2118/9979-PA
[7]. Kermit, E. B. (1980). The technology of artificial lift
methods. Volumen 2b, Petroleum Publishing.
[8]. Kolawole, O., Gamadi, T. D., & Bullard, D. (2020).
Artificial lift system applications in tight formations: the
state of knowledge. SPE Production & Operations, 35(02),
422-434. https://doi.org/10.2118/196592-PA
[9]. Chen, J., Liu, H., Wang, F., Shi, G., Cao, G., & Wu, H.
(2013). Numerical prediction on volumetric efficiency of
progressive cavity pump with fluid–solid interaction
model. Journal of Petroleum Science and Engineering,
109, 12-17. https://doi.org/10.1016/j.petrol.2013.08.019
[10]. Clegg, J. D. (1988). High-rate artificial lift. Journal of
Petroleum Technology, 40(03), 277-282. https://doi.org/10.2118/17638-PA
[11]. Elldakli, F. (2017). Gas lift system. Petroleum &
Petrochemical Engineering Journal, 1(4), 1-11.
[12]. Fakher, S., Khlaifat, A., Hossain, M. E., & Nameer, H.
(2021). Rigorous review of electrical submersible pump
failure mechanisms and their mitigation measures.
Journal of Petroleum Exploration and Production
Technology, 11(10), 3799-3814. https://doi.org/10.1007/s13202-021-01271-6
[13]. Fleshman, R., & Lekic, H. O. (1999). Artificial lift for
high-volume production. Oilfield Review, 11(1), 49-63.
[14]. Gamboa, J., Olivet, A., Iglesias, J. C., & Gonzalez, P.
(2003). Understanding the performance of a progressive
cavity pump with metallic stator. In Proceedings of the
20th International Pump Users Symposium. Texas A&M
University. Turbomachinery Laboratories.
[15]. Hansen, B., Tolbert, B., Vernon, C., & Hedengren, J.
D. (2019). Model predictive automatic control of sucker
rod pump system with simulation case study. Computers
& Chemical Engineering, 121, 265-284. https://doi.org/10.1016/j.compchemeng.2018.08.018
[16]. Hirschfeldt, C. M., Martinez, P., & Distel, F. R. (2007,
April). Artificial-lift systems overview and evolution in a
mature basin: case study of golfo San Jorge. In Latin
American & Caribbean Petroleum Engineering
Conference. OnePetro. https://doi.org/10.2118/108054-MS
[17]. Karthikeshwaran, R. (2018). A study on progressive
cavity pump. JASC: Journal of Applied Science and
Computations, 5(12), 2179- 2187.
[18]. Crnogorac, M., Tanasijević, M., Danilović, D.,
Karović Maričić, V., & Leković, B. (2020). Selection of
Artificial Lift Methods: A Brief Review and New Model Based
on Fuzzy Logic. Energies, 13(7), 1758. https://doi.org/10.3390/en13071758
[19]. Dake, L. P. (1983). Fundamentals of Reservoir
Engineering. Elsevier, (pp. 464).
[20]. Kaul, S. P. (2014). Simulation Study of Volatile Oil
Reservoirs – Understanding the ReservoirDrive
Mechanisms in Conventional and Liquids- Rich
Unconventional Reservoirs and Its Effect on Long Term
Deliverability (Doctoral dissertation, Texas A & M University,
United States).
[21]. Khakimyanov, M. I., Shafikov, I. N., & Khusainov, F. F.
(2015, May). Control of sucker rod pumps energy
consumption. In 2015, International Siberian Conference
on Control and Communications (SIBCON) (pp. 1-4). IEEE.
https://doi.org/10.1109/SIBCON.2015.7147259
[22]. Lehman, M. (2004). Progressing cavity pumps in oil
and gas production. World Pumps, 2004(457), 20-22.
https://doi.org/10.1016/s0262-1762(04)00356-6
[23]. Mathew, U. C., Stanley, E. T., Obibuike, U. J. &
Chijioke, O. I. (2019). Prospects and evaluation of
progressive cavity pump for niger delta field application.
International Journal of Engineering and Advanced
Research Technology (IJEART), 5(8), 12- 16.
[24]. Mohammadzaheri, M., Tafreshi, R., Khan, Z.,
Ghodsi, M., Franchek, M., & Grigoriadis, K. (2020).
Modelling of petroleum multiphase flow in electrical
submersible pumps with shallow artificial neural networks.
Ships and Offshore Structures, 15(2), 174-183. https://doi.org/10.1080/17445302.2019.1605959
[25]. Morrow, S. J., & Hearn, W. J. (2007, April). Plunger-lift
advancements, including velocity and pressure analysis.
In Latin American & Caribbean Petroleum Engineering
Conference. OnePetro. https://doi.org/10.2118/108104-MS
[26]. Naderi, A., Ghayyem, M. A., & Ashrafi, M. (2014).
Artificial Lift Selection in the Khesht Field. Petroleum
Science and Technology, 32(15), 1791-1799. https://doi.org/10.1080/10916466.2011.565291
[27]. Nanda, R., Gupta, S., & Shukla, A. K. N. (2011).
Experimental setup for performance characterization of
a jet pump with varying angles of placement and depth.
Journal of Petroleum Exploration and Production
Technology, 1(2), 107-110. https://doi.org/10.1007/s13202-011-0010-x
[28]. Nascimento, J., Maitelli, A., Maitelli, C., &
Cavalcanti, A. (2021). Diagnostic of Operation
Conditions and Sensor Faults Using Machine Learning in
Sucker-Rod Pumping Wells. Sensors, 21(13), 4546. https://doi.org/10.3390/s21134546
[29]. Neely, B., Gipson, F., Clegg, J., Capps, B., & Wilson, P.
(1981, October). Selection of artificial lift method. In SPE
Annual Technical Conference and Exhibition. OnePetro.
https://doi.org/10.2118/10337-MS
[30]. Nikonov, E., Goridko, K., & Verbitsky, V. (2018,
October). Study of the submersible sand separator in the
field of centrifugal forces for increasing the artificial lift
efficiency. In SPE Russian Petroleum Technology
Conference. OnePetro. https://doi.org/10.2118/191544-18RPTC-MS
[31]. Ounsakul, T., Sirirattanachatchawan, T.,
Pattarachupong, W., Yokrat, Y., & Ekkawong, P. (2019,
March). Artificial lift selection using machine learning. In
International Petroleum Technology Conference.
OnePetro. https://doi.org/10.2523/IPTC-19423-MS
[32]. Park, H. Y., Falcone, G., & Teodoriu, C. (2009).
Decision matrix for liquid loading in gas wells for
cost/benefit analyses of lifting options. Journal of Natural
Gas Science and Engineering, 1(3), 72-83. https://doi.org/10.1016/j.jngse.2009.03.009
[33]. Patil, A., Kasprzyk, M., Delgado, A., & Morrison, G.
(2020). Effect of leakage flow path wear on axial thrust in
downhole electrical submersible pump unit. Journal of
Fluids Engineering, 142(5), 1-11. https://doi.org/10.1115/1.4045571
[34]. Refai, A., Abdou, H. A. M., Seleim, A., Biasin, G.,
Reda, W. & Dmitry, L. (2013). Permanent magnet motor
application for esp artificial lift. North Africa Technical
Conference and Exhibition. https://doi.org/10.2118/164666-MS
[35]. Joel Romero, O., & Hupp, A. (2014). Subsea
electrical submersible pump significance in petroleum
offshore production. Journal of Energy Resources
Technology, 136(1), 1-8. https://doi.org/10.1115/1.4025258
[36]. Rowlan, O. L., Lea, J. F., & McCoy, J. N. (2007,
November). Overview of beam pump operations. In SPE
Annual Technical Conference and Exhibition. OnePetro.
https://doi.org/10.2118/110234-MS
[37]. Shahri, M. (2011). Simplified and rapid method for
determining flow characteristics of every gas-lift valve
(GLV). Texas Tech University, (pp. 1-112).
[38]. Singh, A. (2015, September). Root-cause
identification and production diagnostic for gas wells with
plunger lift. In SPE Reservoir Characterisation and
Simulation Conference and Exhibition. OnePetro. https://doi.org/10.2118/175564-MS
[39]. Syed, F. I., Alshamsi, M., Dahaghi, A. K., &
Neghabhan, S. (2020). Artificial lift system optimization
using machine learning applications. Petroleum, 8(2),
219-226. https://doi.org/10.1016/j.petlm.2020.08.003
[40]. Takacs, G. (2015). Sucker-rod Pumping Handbook:
Production Engineering Fundamentals and Long-Stroke
Rod Pumping. Gulf Professional Publishing.
[41]. Takács, G. (2003). Sucker-Rod Pumping Manual.
PennWell Corporation.
[42]. Toochukwu, E. S., Julian, O. U., Chemazu, I. A.,
Chidube, U. M., Emeka, O. J., & Kelechi, I. K. (2020).
Analyses of Electric Submersible Progressive Cavity Pumps
for Production of Heavy Oil Reservoir in the Niger Delta.
Advances in Petroleum Exploration and Development, 19(1), 9-16. https:// doi.org/10.3968/11515
[43]. Valbuena, J., Pereyra, E., & Sarica, C. (2016,
October). Defining the artificial lift system selection
guidelines for horizontal wells. In SPE North America
Artificial Lift Conference and Exhibition. OnePetro. https://doi.org/10.2118/181229-MS
[44]. Wang, H., Hu, Q., Yang, Y., & Wang, C. (2021).
Performance differences of electrical submersible pump
under variable speed schemes. International Journal of
Simulation Modelling, 20, 76-86.
[45]. Wang, J. F., Piechna, J., & Müller, N. (2012). A novel
design of composite water turbine using CFD. Journal of
Hydrodynamics, Ser. B, 24(1), 11-16. https://doi.org/10.1016/S1001-6058(11)60213-8
[46]. Weatherford. (2015). Jet-Pump Lifting Systems.
Retrieved from https://www.weatherford.com/documents/brochure/products-and-services/ production-optimization/ jet-pump-lifting-systems/
[47]. Winkler, H. W., & Camp, G. F. (1987). Dynamic
performance testing of single-element unbalanced gaslift
valves. SPE Production Engineering, 2(03), 183-190.
https://doi.org/10.2118/14348-pa
[48]. Zeng, Z., & Cremaschi, S. (2017). Artificial lift infrastructure planning for shale gas producing horizontal
wells. Proceedings of the FOCAPO/CPC, Tuscan, AZ, USA,
8, 12.
[49]. Zhao, K., Tian, W., Li, X., & Bai, B. (2018). A physical
model for liquid leakage flow rate during plunger lifting
process in gas wells. Journal of Natural Gas Science and
Engineering, 49, 32-40. https://doi.org/10.1016/j.jngse.2017.10.008
[49]. Zheng, L., Wu, X., Han, G., Li, H., Zuo, Y., & Zhou, D.
(2018). Analytical model for the flow in progressing cavity
pump with the metallic stator and rotor in clearance fit.
Mathematical Problems in Engineering. https://doi.org/10.1155/2018/3696930
[50]. Zhou, L., Wang, W., Hang, J., Shi, W., Yan, H., & Zhu, Y.
(2020). Numerical investigation of a high-speed electrical
submersible pump with different end clearances. Water,
12(4), 1116. https://doi.org/10.3390/w12041116
[51]. Zhu, J., Guo, X., Liang, F., & Zhang, H. Q. (2017).
Experimental study and mechanistic modeling of
pressure surging in electrical submersible pump. Journal
of Natural Gas Science and Engineering, 45, 625-636.
https://doi.org/10.1016/j.jngse.2017.06.027