References
[1]. Abacha, A. B., Chowdhury, M. F. M., Karanasiou, A.,
Mrabet, Y., Lavelli, A., & Zweigenbaum, P. (2015). Text
mining for pharmacovigilance: Using machine learning
for drug name recognition and drug–drug interaction
extraction and classification. Journal of Biomedical
Informatics, 58, 122-132. https://doi.org/10.1016/j.jbi.2015.09.015
[2]. Burnap, P., & Williams, M. L. (2016). Us and them:
identifying cyber hate on Twitter across multiple protected
characteristics. EPJ Data science, 5, 1-15.
[3]. Cavnar, W. B., & Trenkle, J. M. (1994, April). N-grambased
text categorization. In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval (Vol. 161175).
[4]. Chen, Y., Zhou, Y., Zhu, S., & Xu, H. (2012, September).
Detecting offensive language in social media to protect
adolescent online safety. In 2012, International
Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing, 71-80.
https://doi.org/10.1109/SocialCom-PASSAT.2012.55
[5]. Chen, Y., Zhou, Y., Zhu, S., & Xu, H. (2012, September).
Detecting offensive language in social media to protect
adolescent online safety. In 2012, International
Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing (pp. 71-80). IEEE. 10.1109/SocialCom-PASSAT.2012.55
[6]. Dinakar, K., Jones, B., Havasi, C., Lieberman, H., &
Picard, R. (2012). Common sense reasoning for
detection, prevention, and mitigation of cyberbullying.
ACM Transactions on Interactive Intelligent Systems (TiiS),
2(3), 1-30.
[7]. Dinakar, K., Reichart, R., & Lieberman, H. (2011).
Modeling the detection of textual cyberbullying. In
Proceedings of the International AAAI Conference on
Web and Social Media, 5(3), 11-17.
[8]. Facebook. (2013). What does Facebook consider to
be hate speech? Retrieved from https://www.facebook.com/help/135402139904490
[9]. FBI. (2015). 2015 Hate Crime Statistics. Retrieved from
https://ucr.fbi.gov/hate-crime/
[10]. Gardner, M. W., & Dorling, S. R. (1998). Artificial
neural networks (the multilayer perceptron)-a review of
applications in the atmospheric sciences. Atmospheric
Environment, 32(14-15), 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0
[11]. Gitari, N. D., Zuping, Z., Damien, H., & Long, J.
(2015). A lexicon-based approach for hate speech
detection. International Journal of Multimedia and
Ubiquitous Engineering, 10(4), 215-230. http://doi.org/10.14257/ijmue.2015.10.4.21
[12]. Gitari, N. D., Zuping, Z., Damien, H., & Long, J.
(2015). A lexicon-based approach for hate speech
detection. International Journal of Multimedia and Ubiquitous Engineering, 10(4), 215-230.
[13]. Greevy, E., & Smeaton, A. F. (2004, July). Classifying
racist texts using a support vector machine. In
Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval (pp. 468-469). https://doi.org/10.1145/1008992.1009074
[14]. Joachims, T. (1998, April). Text categorization with
support vector machines: Learning with many relevant
features. In European Conference on Machine Learning
(pp. 137-142). Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0026683
[15]. Köffer, S., Riehle, D. M., Höhenberger, S., & Becker, J.
(2018). Discussing the value of automatic hate speech
detection in online debates. Multikonferenz Wirtschafts
informatik (MKWI 2018): Data Driven X-Turning Data in
Value, Leuphana, Germany.
[16]. Kovács, G., Alonso, P., & Saini, R. (2021). Challenges
of hate speech detection in social media. SN Computer
Science, 2(2), 1-15. https://doi.org/10.1007/s42979-021-00457-3
[17]. Kwok, I., & Wang, Y. (2013, June). Locate the hate:
Detecting tweets against blacks. In Twenty-seventh AAAI
conference on artificial intelligence.
[18]. Le, Q., & Mikolov, T. (2014, June). Distributed
representations of sentences and documents. In
International Conference on Machine Learning (pp.1188-1196). PMLR.
[19]. Lewis, D. D. (1998, April). Naive (Bayes) at forty: The
independence assumption in information retrieval. In
European Conference on Machine Learning (pp. 4-15).
Springer, Berlin, Heidelberg. https://doi.org/10.1007/Bfb0026666
[20]. Liu, S., & Forss, T. (2014, October). Combining Ngram
based Similarity Analysis with Sentiment Analysis in
Web Content Classification. In KDIR (pp. 530-537).
[21]. Malmasi, S., & Zampieri, M. (2017). Detecting hate
speech in social media. arXiv preprint arXiv:1712.06427.
[22]. Mehdad, Y., & Tetreault, J. (2016, September). Do
characters abuse more than words?. In Proceedings of the 17 Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 299-303.
[23]. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., &
Dean, J. (2013). Distributed representations of words and
phrases and their compositionality. Advances in Neural
Information Processing Systems, 26.
[24]. Mujtaba, G., Shuib, L., Raj, R. G., Rajandram, R., &
Shaikh, K. (2018). Prediction of cause of death from
forensic autopsy reports using text classification
techniques: A comparative study. Journal of Forensic and
Legal Medicine, 57, 41-50. https://doi.org/10.1016/j.jflm.2017.07.001
[25]. Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., &
Chang, Y. (2016, April). Abusive language detection in
online user content. In Proceedings of the 25th
International Conference on World Wide Web (pp. 145-153). https://doi.org/10.1145/2872427.2883062
[26]. Ramos, J. (2003, December). Using TF-IDF to
determine word relevance in document queries. In
Proceedings of the First Instructional Conference on
Machine Learning, 242(1), 29-48.
[27]. Razavi, A. H., Inkpen, D., Uritsky, S., & Matwin, S.
(2010, May). Offensive language detection using multilevel
classification. In Canadian Conference on Artificial
Intelligence, 16-27. https://doi.org/10.1007/978-3-642-13059-5_5
[28]. Schmidt, A., & Wiegand, M. (2017, April). A survey on
hate speech detection using natural language
processing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for Social
Media, 1-10. http://doi.org/10.18653/v1/W17-1101
[29]. Schmidt, A., & Wiegand, M. (2017, April). A survey on
hate speech detection using natural language
processing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for Social
Media (pp. 1-10). 10.18653/v1/W17-1101
[30]. Shaikh, S., & Doudpotta, S. M. (2019). Aspects based
opinion mining for teacher and course evaluation. Sukkur
IBA Journal of Computing and Mathematical Sciences,
3(1), 34-43. https://doi.org/10.30537/sjcms.v3i1.375
[31]. Sharma, S., Agrawal, S., & Shrivastava, M. (2018). Degree based classification of harmful speech using
twitter data. arXiv preprint arXiv:1806.04197.
[32]. Sigurbergsson, G. I., & Derczynski, L. (2019).
Offensive language and hate speech detection for
Danish. arXiv preprint arXiv:1908.04531.
[33]. Tulkens, S., Hilte, L., Lodewyckx, E., Verhoeven, B., &
Daelemans, W. (2016). A dictionary-based approach to
racism detection in dutch social media. arXiv preprint arXiv:1608.08738.
[34]. Twitter. (2017). The Twitter Rules. Retrieved from
https://help.twitter.com/en/rules-and-policies/twitter-rules
[35]. Wenando, F. A., Adji, T. B., & Ardiyanto, I. (2017). Text
classification to detect student level of understanding in
prior knowledge activation process. Advanced Science
Letters, 23(3), 2285-2287. https://doi.org/10.1166/asl.2017.8768
[36]. Wendling, M. (2015). 2015: The Year that Angry Won the Internet. Retrieved from http://www.bbc.com/news/blogs-trending-35111707
[37]. Xu, B., Guo, X., Ye, Y., & Cheng, J. (2012). An
improved random forest classifier for text categorization.
Journal of Computers, 7(12), 2913-2920.
[38]. Ying, C., Qi-Guang, M., Jia-Chen, L., & Lin, G.
(2013). Advance and prospects of AdaBoost algorithm.
Acta Automatica Sinica, 39(6), 745-758. https://doi.org/10.1016/S1874-1029(13)60052-X
[39]. YouTube. (2017). Hate Speech. Retrieved from
https://support.google.com/youtube/answer/2801939?hl=en
[40]. Zhang, M. L., & Zhou, Z. H. (2005, July). A k-nearest
neighbor based algorithm for multi-label classification. In
2005, IEEE International Conference on Granular
Computing (Vol. 2, pp. 718-721). IEEE. 10.1109/GRC.2005.1547385