References
[1]. Bureau of Indian Standards. (1959). Method of Tests
for Strength of Concrete (IS 516-1959), New Delhi, India.
[2]. Bureau of Indian Standards. (1970). Specifications for
Coarse and Fine Aggregates from Natural Sources for
Concrete (IS 383-1970), New Delhi, India.
[3]. Bureau of Indian Standards. (1976). Tests for Burnt
Clay Bricks (IS 3495-1976), New Delhi, India.
[4]. Cachim, P.B. (2009). Mechanical properties of brick
aggregate concrete. Construction and Building
Materials, 23(3), 1292-1297. https://doi.org/10.1016/j.conbuildmat.2008.07.023
[5]. Dang, J., Zhao, J., Hu, W., Du, Z., & Gao, D. (2018).
Properties of mortar with waste clay bricks as fine
aggregate. Construction and Building Materials, 166, 898-907. https://doi.org/10.1016/j.conbuildmat.2018.01.109
[6]. De Brito, J., Pereira, A. S., & Correia, J. R. (2005).
Mechanical behaviour of non-structural concrete made
with recycled ceramic aggregates. Cement and
Concrete Composites, 27(4), 429-433. https://doi.org/10.1016/j.cemconcomp.2004.07.005
[7]. EFCA. (2006). EFNARC Guidelines for Viscosity
Modifying Admixtures for Concrete. Retrieved from
http://www.efca.info/download/efnarc-efca-guidelinesfor-viscosity-modifying-admixtures-for-concreteguidelines-for-vma/
[8]. EFNARC the SCC European Project Group. (2005).
The European Guidelines for Self-Compacting Concrete:
Specification Production and Use. Retrieved from
https://www.theconcreteinitiative.eu/images/ECP_Documents/EuropeanGuidelinesSelfCompactingConcrete.pdf
[9]. Gomes, M., & De Brito, J. (2009). Structural concrete
with incorporation of coarse recycled concrete and
ceramic aggregates: durability performance. Materials
and Structures, 42(5), 663-675. https://doi.org/10.1617/s11527-008-9411-9
[10]. Heikal, M., Zohdy, K. M., & Abdelkreem, M. (2013).
Mechanical, micro structure and rheological
characteristics of high performance self-compacting
cement pastes and concrete containing ground clay
bricks. Construction and Building Materials, 38, 101-109.
https://doi.org/10.1016/j.conbuildmat.2012.07.114
[11]. Jain, S., Singhal, S., & Jain, N. K. (2019). Construction
and demolition waste generation in cities in India: an
integrated approach. International Journal of
Sustainable Engineering, 12(5), 333-340. https://doi.org/10.1080/19397038.2019.1612967
[12]. Khatib, J. M. (2005). Properties of concrete
incorporating fine recycled aggregate. Cement and
Concrete Research, 35(4), 763-769. https://doi.org/10.1016/j.cemconres.2004.06.017
[13]. Wan, D.S.L.Y., Aslani, F. & Ma, G. (2018). Lightweight
self-compacting concrete incorporating perlite, scoria,
and polystyrene aggregates. Journal of Materials in Civil
Engineering, 30(8), 04018178. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002350
[14]. Masum, A.T.M., & Manzur, T. (2019). Delaying time to
corrosion initiation in concrete using brick aggregate as
internal curing medium under adverse curing conditions.
Construction and Building Materials, 228, 116772.
https://doi.org/10.1016/j.conbuildmat.2019.116772
[15]. Poon, C.S., & Chan, D. (2006). Feasible use of
recycled concrete aggregates and crushed clay brick as
unbound road sub-base. Construction and Building
Materials, 20(8), 578-585. https://doi.org/10.1016/j.conbuildmat.2005.01.045
[16]. Su, N., Hsu, K. C., & Chai, H. W. (2001). A simple mix
design method for self-compacting concrete. Cement
and Concrete Research, 31(12), 1799-1807.
https://doi.org/10.1016/S0008-8846(01)00566-X
[17]. Sua-iam, G., & Makul, N. (2015). Rheological and
mechanical properties of cement–fly ash selfconsolidating
concrete incorporating high volumes of
alumina-based material as fine aggregate. Construction
and Building Materials, 95, 736-747. https://doi.org/10.1016/j.conbuildmat.2015.07.180
[18]. Uddin, M. T., Mahmood, A. H., Kamal, M. R. I., Yashin, S. M., & Zihan, Z. U. A. (2017). Effects of maximum size of
brick aggregate on properties of concrete. Construction
and Building Materials, 134, 713-726. https://doi.org/10.1016/j.conbuildmat.2016.12.164
[19]. Yang, J., Du, Q., & Bao, Y. (2011). Concrete with
recycled concrete aggregate and crushed clay bricks.
Construction and Building Materials, 25(4), 1935-1945.
https://doi.org/10.1016/j.conbuildmat.2010.11.063
[20]. Zaichenko, M., Lakhtaryna, S., & Korsun, A. (2015). The influence of extra mixing water on the properties of
structural lightweight aggregate concrete. Procedia
Engineering, 117, 1036-1042. https://doi.org/10.1016/j.proeng.2015.08.228
[21]. Zong, L., Fei, Z., & Zhang, S. (2014). Permeability of
recycled aggregate concrete containing fly ash and clay
brick waste. Journal of Cleaner Production, 70, 175-182.
https://doi.org/10.1016/j.jclepro.2014.02.040