References
[1]. Akhnoukh, A. (2021). Application of supplementary
cementitious materials in precast concrete industry. In
Sustainability of Concrete with Synthetic and Recycled
Aggregates. IntechOpen.
[2]. Alrshoudi, F., & Alshannag, M. (2020). Suitability of
palm frond waste ash as a supplementary cementitious
material. Arabian Journal for Science and Engineering,
45(10), 7967-7974. https://doi.org/10.1007/s13369-020-04502-w
[3]. Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N.
(2015). Supplementary cementitious materials origin
from agricultural wastes–A review. Construction and
Building Materials, 74, 176-187. https://doi.org/10.1016/j.conbuildmat.2014.10.010
[4]. Bheel, N., Abbasi, S. A., Awoyera, P., Olalusi, O. B.,
Sohu, S., Rondon, C., & Echeverría, A. M. (2020). Fresh
and hardened properties of concrete incorporating
binary blend of metakaolin and ground granulated blast
furnace slag as supplementary cementitious material.
Advances in Civil Engineering, 2020, 1-8. https://doi.org/10.1155/2020/8851030
[5]. Busari, A. A., Akinmusuru, J. O., & Dahunsi, B. I. (2018).
Review of sustainability in self-compacting concrete: The
use of waste and mineral additives as supplementary
cementitious materials and aggregates. Portugaliae
Electrochimica Acta, 36(3), 147-162. https://doi.org/10.4152/pea.201803147
[6]. Channa, S. H., Mangi, S. A., Bheel, N., Soomro, F. A., &
Khahro, S. H. (2022). Short-term analysis on the combined
use of sugarcane bagasse ash and rice husk ash as
supplementary cementitious material in concrete
production. Environmental Science and Pollution
Research, 29(3), 3555-3564. https://doi.org/10.1007/s11356-021-15877-0
[7]. Duchesne, J. (2021). Alternative supplementary
cementitious materials for sustainable concrete
structures: A review on characterization and properties.
Waste and Biomass Valorization, 12(3), 1219-1236.
https://doi.org/10.1007/s12649-020-01068-4
[8]. Eid, M. S., & Saleh, H. M. (2021). Characterizations of
cement and modern sustainable concrete incorporating
different waste additives. In Sustainability of Concrete with
Synthetic and Recycled Aggregates. IntechOpen.
[9]. Fadele, O., & Otieno, M. (2022). Utilisation of
supplementary cementitious materials from agricultural
wastes: A review. Proceedings of the Institution of Civil
Engineers - Construction Materials, 175(2), 65–71. https://doi.org/10.1680/jcoma.19.00098
[10]. Gar, P. S., Suresh, N., & Bindiganavile, V. (2017).
Sugar cane bagasse ash as a pozzolanic admixture in
concrete for resistance to sustained elevated
temperatures. Construction and Building Materials, 153,
929-936. https://doi.org/10.1016/j.conbuildmat.2017.07.107
[11]. Gupta, S., & Chaudhary, S. (2020). State of the art
review on supplementary cementitious materials in
India–I: An overview of legal perspective, governing
organizations, and development patterns. Journal of
Cleaner Production, 261, 121203. https://doi.org/10.1016/j.jclepro.2020.121203
[12]. Juenger, M. C., & Siddique, R. (2015). Recent
advances in understanding the role of supplementary
cementitious materials in concrete. Cement and
Concrete Research, 78, 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018
[13]. Juenger, M. C., Snellings, R., & Bernal, S. A. (2019).
Supplementary cementitious materials: New sources,
characterization, and performance insights. Cement
and Concrete Research, 122, 257-273. https://doi.org/10.1016/j.cemconres.2019.05.008
[14]. Kamaruddin, S., Goh, W. I., Abdul Mutalib, N. A. N.,
Jhatial, A. A., Mohamad, N., & Rahman, A. F. (2021).
Effect of combined supplementary cementitious
materials on the fresh and mechanical properties of ecoefficient
self-compacting concrete. Arabian Journal for Science and Engineering, 46(11), 10953-10973. https://doi.org/10.1007/s13369-021-05656-x
[15]. Khan, M. N. N., Jamil, M., Kaish, A. B. M. A., & Zain, M.
F. M. (2014). An overview on manufacturing of rice husk
ash as supplementary cementitious material. Australian
Journal of Basic and Applied Sciences, 8(19), 176-181.
[16]. Kumar, V. P., & Prasad, D. R. (2019). Influence of
supplementary cementitious materials on strength and
durability characteristics of concrete. Advances in
Concrete Construction, 7(2), 75-85. https://doi.org/10.12989/acc.2019.7.2.075
[17]. Li, G., Zhou, C., Ahmad, W., Usanova, K. I., Karelina,
M., Mohamed, A. M., & Khallaf, R. (2022). Fly ash
application as supplementary cementitious material: A
review. Materials, 15(7), 2664. https://doi.org/10.3390/ma15072664
[18]. Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011).
Supplementary cementitious materials. Cement and
Concrete Research, 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
[19]. Marchetti, E. (2020). Use of Agricultural Wastes as
Supplementar y Cementitious Materials. Digitala
Vetenskapliga Arkivet, (pp. 164).
[20]. Mark, O. G., Ede, A. N., Olofinnade, O., Bamigboye,
G., Okeke, C., Oyebisi, S. O., & Arum, C. (2019). Influence
of some selected supplementary cementitious materials
on workability and compressive strength of concrete–a
review. In IOP Conference Series: Materials Science and
Engineering, 640(1), 012071. https://doi.org/10.1088/1757-899X/640/1/012071
[21]. Onyenokporo, N. C. (2022). Supplementary
cementitious materials as sustainable partial
replacement for cement in the building industry.
International Journal of Architectural and Environmental
Engineering, 16(3), 74-84.
[22]. Paul, S. C., Mbewe, P. B., Kong, S. Y., & Šavija, B.
(2019). Agricultural solid waste as source of
supplementary cementitious materials in developing
countries. Materials, 12(7), 1112. https://doi.org/10.3390/ma12071112
[23]. Srivastava, V., Atul, I. A., Mehta, P. K., Satyendranath, M. K., & Tripathi, M. K. (2018). Supplementary
cementitious materials in construction—an attempt to
reduce CO emission. Journal of Environmental 2
Nanotechnology, 7(3), 1-6. https://doi.org/10.13074/jent.2018.06.182306
[24]. Teixeira, J., Schaefer, C. O., Maia, L., Rangel, B.,
Neto, R., & Alves, J. L. (2022). Influence of Supplementary
Cementitious Materials on Fresh Properties of 3D Printable
Materials. Sustainability, 14(7), 3970. https://doi.org/10.3390/su14073970
[25]. Thomas, B. S., Yang, J., Mo, K. H., Abdalla, J. A.,
Hawileh, R. A., & Ariyachandra, E. (2021). Biomass ashes
from agricultural wastes as supplementary cementitious
materials or aggregate replacement in
cement/geopolymer concrete: A comprehensive review.
Journal of Building Engineering, 40, 102332. https://doi.org/10.1016/j.jobe.2021.102332
[26]. Toutanji, H., Delatte, N., Aggoun, S., Duval, R., & Danson, A. (2004). Effect of supplementary cementitious
materials on the compressive strength and durability of
short-term cured concrete. Cement and Concrete
Research, 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017
[27]. Wang, H., Qi, T., Feng, G., Wen, X., Wang, Z., Shi, X.,
& Du, X. (2021). Effect of partial substitution of corn straw
fly ash for fly ash as supplementary cementitious material
on the mechanical properties of cemented coal gangue
backfill. Construction and Building Materials, 280,
122553. https://doi.org/10.1016/j.conbuildmat.2021.122553
[28]. Wu, K., Han, H., Rößler, C., Xu, L., & Ludwig, H. M.
(2021). Rice hush ash as supplementary cementitious
material for calcium aluminate cement–effects on
strength and hydration. Construction and Building
Materials, 302, 124198. https://doi.org/10.1016/j.conbuildmat.2021.124198