References
[1]. Ahlawat, S., & Choudhary, A. (2020). Hybrid CNN-SVM
classifier for handwritten digit recognition. International
Conference on Computational Intelligence & Data
Science, 167, 2554-2560. https://doi.org/10.1016/j.procs.2020.03.309
[2]. Aizenberg, I. N., Butakoff, C., Karnaukhov, V. N.,
Merzlyakov, N. S., & Milukova, O. (2002). Blurred image
restoration using the type of blur and blur parameter
identification on the neural network. In Image Processing:
Algorithms and Systems, 4667, 460-471. https://doi.org/10.1117/12.468009
[3]. Ciancio, A., Costa, A. L. N. T. T. D., Silva, E. A. B. D.,
Said, A., Samadani, R., & Obrador P. (2011). No-
Reference blur assessment of digital pictures based on
multi-feature classifiers. IEEE Transactions on Image
Processing, 20(1), 64-75. https://doi.org/10.1109/TIP.2010.2053549
[4]. Fernández-Delgado, M., Cernadas, E., Barro, S., &
Amorim, D. (2014). Do we need hundreds of classifiers to
solve real world classification problems? The Journal of
Machine Learning Research, 15(1), 3133-3181.
[5]. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, 770-778. https://doi.org/10.1109/CVPR.2016.90
[6]. Jiang, Y., Yang, F., Zhu, H., Zhou, D., & Zeng, X. (2019).
Nonlinear CNN: improving CNNs with quadratic
convolutions. Neural Computing and Applications,
32(12), 8507-8516. https://doi.org/10.1007/s00521-019-04316-4
[7]. Krizhevsky, A., Hinton, G. E., & Sutskever, I. (2012).
Image-net classification with deep convolutional neural
networks. Advances in Neural Information Processing Systems, 1097-1105. https://doi.org/10.1145/3065386
[8]. Mavridaki, E., & Mezaris, V. (2014). No-reference blur
assessment in natural images using fourier transform and
spatial pyramids. In 2014, IEEE International Conference
on Image Processing (ICIP), 566-570. https://doi.org/10.1109/ICIP.2014.7025113
[9]. Rugna, J. D., & Konik, H. (2003). Automatic blur
detection for meta-data extraction in content-based
retrieval context. In Internet imaging V, 5304, 285-294.
https://doi.org/10.1117/12.526949
[10]. Schittenkopf, C., Deco, G., & Brauer, W. (1997). Two
strategies to avoid overfitting in feedforward networks.
Neural Networks, 10(3), 505-516. https://doi.org/10.1016/S0893-6080(96)00086-X
[11]. Senthilkumaran, N., & Rajesh, R. (2009). Edge
detection techniques for image segmentation-a survey
of soft computing approaches, International Journal of
Recent Trends in Engineering, 1(2), 250-254.
[12]. Wang, R., Li, R., & Sun, H. (2016). Haze removal
based on multiple scattering model with superpixel
algorithm. Signal Processing, 127, 24-36. https://doi.org/10.1016/j.sigpro.2016.02.003
[13]. Wang, R., Li, W., Qin, R., & Wu, J. (2017). Blur image
classification based on deep learning. In 2017, IEEE
International Conference on Imaging Systems and
Techniques (IST), 1-6. https://doi.org/10.1109/IST.2017.8261503
[14]. Yang, D., & Qin, S. (2015). Restoration of degraded
image with partial blurred regions based on blur
detection and classification. In 2015, IEEE International
Conference on Mechatronics and Automation (ICMA),
2414-2419. https://doi.org/10.1109/ICMA.2015.7237865
[15]. Zhang, C., & Ma, Y. (2012). Ensemble Machine
Learning (Methods & Applications). Springer Publication,
NewYork. https://doi.org/10.1007/978-1-4419-9326-7