Open Circuit Fault-Tolerant Operation of 3-Φ Multilevel Inverter

Sunil Manjhi*, Rajkumar Jhapte**
* Department of Electrical Engineering, Shri Shankaracharya Group of Institution, Junwani, Chhattisgarh, India.
** Department of Electrical and Electronics Engineering, Shri Shankaracharya Technical Campus, Junwani, Bhilai, Chhattisgarh, India.
Periodicity:January - June'2022
DOI : https://doi.org/10.26634/jcir.10.1.18816

Abstract

A modified Fault-Tolerant (FT) structure is presented for the five-level Multi-Level Inverter (MLI) in this research work. A self capacitor voltage balancing control regulates the voltage across the capacitor by a half magnitude of the DC source value to produce a five-level output voltage waveform. Furthermore, the self capacitor voltage balancing control reduces complexity and enhances system reliability. A possible Open Circuit (OC) fault in the switches of the proposed structure is further analyzed. On the basis of a comparative analysis between the five-level MLI and the proposed faulttolerant structure, this structure is presented. When compared with the most recent FT topologies, it contains fewer devices. MATLAB/Simulink are used to study the proposed single-phase and three-phase FT structures under pre-fault, fault and post-fault operation.

Keywords

Multilevel Inverters (MLI), Fault Tolerance (FT), Open Circuit (OC).

How to Cite this Article?

Manjhi, S. and Jhapte, R. (2022). Open Circuit Fault-Tolerant Operation of 3-Φ Multilevel Inverter. i-manager’s Journal on Circuits and Systems, 10(1), 35-42. https://doi.org/10.26634/jcir.10.1.18816

References

[1]. Bana, P. R., Panda, K. P., Naayagi, R. T., Siano, P., & Panda, G. (2019). Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation. IEEE Access, 7, 54888- 54909.https://doi.org/10.1109/ACCESS.2019.2913447
[2]. Chen, A., Hu, L., Chen, L., Deng, Y., & He, X. (2005). A multilevel converter topology with fault-tolerant ability. IEEE Transactions on Power Electronics, 20(2), 405-415. https://doi.org/10.1109/TPEL.2004.842983
[3]. Dewangan, N. K., Gupta, S., & Gupta, K. K. (2019). Approach to synthesis of fault tolerant reduced device count multilevel inverters (FT RDC MLIs). IET Power Electronics, 12(3), 476-482. https://doi.org/10.1049/ietpel.2018.5176
[4]. Dewangan, N. K., Tailor, T. K., Agrawal, R., Bhatnagar, P., & Gupta, K. K. (2021). A multilevel inverter structure with open circuit fault-tolerant capability. Electrical Engineering, 103(3), 1613-1628. https://doi.org/10.1007/s00202-020-01149-6
[5]. Gautam, S. P., Gupta, S., & Kumar, L. (2017). Reliability improvement of transistor clamped H bridge based cascaded multilevel inverter. IET Power Electronics, 10(7), 770-781. https://doi.org/10.1049/iet-pel.2016.0574
[6]. Gupta, K. K., Ranjan, A., Bhatnagar, P., Sahu, L. K., & Jain, S. (2015). Multilevel inverter topologies with reduced device count: A review. IEEE Transactions on Power Electronics, 31(1), 135-151. https://doi.org/10.1109/TPEL.2015.2405012
[7]. Metri, J. I., Vahedi, H., Kanaan, H. Y., & Al-Haddad, K. (2016). Real-time implementation of model-predictive control on seven-level packed U-cell inverter. IEEE Transactions on Industrial Electronics, 63(7), 4180-4186. https://doi.org/10.1109/TIE.2016.2542133
[8]. Nicolas-Apruzzese, J., Busquets-Monge, S., Bordonau, J., Alepuz, S., & Calle-Prado, A. (2012). Analysis of the fault-tolerance capacity of the multilevel active-clamped converter. IEEE Transactions on Industrial Electronics, 60(11), 4773-4783. https://doi.org/10.1109/TIE.2012.2222856
[9]. Ounejjar, Y., & Al-Haddad, K. (2010). A novel six-band hysteresis control of the packed U cells seven-level converter. In 2010 IEEE International Symposium on Industrial Electronics, 3199-3204. https://doi.org/10.1109/ISIE.2010.5637579
[10]. Ounejjar, Y., Al-Haddad, K., & Dessaint, L. A. (2011). A novel six-band hysteresis control for the packed U cells seven-level converter: Experimental validation. IEEE Transactions on Industrial Electronics, 59(10), 3808-3816. https://doi.org/10.1109/TIE.2011.2161059
[11]. Ounejjar, Y., Al-Haddad, K., & Gregoire, L. A. (2010). Packed U cells multilevel converter topology: theoretical study and experimental validation. IEEE Transactions on Industrial Electronics, 58(4), 1294-1306. https://doi.org/10.1109/TIE.2010.2050412
[12]. Rao, A. M., & Sivakumar, K. (2015). A fault-tolerant single-phase five-level inverter for grid-independent PV systems. IEEE Transactions on Industrial Electronics, 62(12), 7569-7577. https://doi.org/10.1109/TIE.2015.2455523
[13]. Rodriguez, J., Bernet, S., Steimer, P. K., & Lizama, I. E. (2009). A survey on neutral-point-clamped inverters. IEEE Transactions on Industrial Electronics, 57(7), 2219-2230. https://doi.org/10.1109/TIE.2009.2032430
[14]. Sebaaly, F., Sharifzadeh, M., Kanaan, H. Y., & Al- Haddad, K. (2021). Multilevel switching-mode operation of finite-set model predictive control for grid-connected packed e-cell inverter. IEEE Transactions on Industrial Electronics, 68(8), 6992-7001. https://doi.org/10.1109/TIE.2020.3003627
[15]. Sheir, A., Orabi, M., Ahmed, M. E., Iqbal, A., & Youssef, M. (2014). A high efficiency single-phase multilevel packed U cell inverter for photovoltaic applications. In 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), 1-6. https://doi.org/10.1109/INTLEC.2014.6972164
[16]. Trabelsi, M., Bayhan, S., Ghazi, K. A., Abu-Rub, H., & Ben-Brahim, L. (2016). Finite-control-set model predictive control for grid-connected packed-U-cells multilevel inverter. IEEE Transactions on Industrial Electronics, 63(11), 7286-7295. https://doi.org/10.1109/TIE.2016.2558142
[17]. Vahedi, H., & Al-Haddad, K. (2016). Real-time implementation of a seven-level packed U-cell inverter with a low-switching-frequency voltage regulator. IEEE Transactions on Power Electronics, 31(8), 5967-5973. https://doi.org/10.1109/TPEL.2015.2490221
[18]. Vahedi, H., Labbé, P. A., & Al-Haddad, K. (2015). Sensor-less five-level packed U-cell (PUC5) inverter operating in stand-alone and grid-connected modes. IEEE Transactions on Industrial Informatics, 12(1), 361-370. https://doi.org/10.1109/TII.2015.2491260
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.