References
[1]. Ashfaq, R. A. R., Wang, X. Z., Huang, J. Z., Abbas, H., &
He, Y. L. (2017). Fuzziness based semi-supervised learning
approach for intrusion detection system. Information
Sciences, 378, 484-497. https://doi.org/10.1016/j.ins.2016.04.019
[2]. Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying
stock market forecasting techniques–Part II: Soft
computing methods. Expert Systems with Applications,
36(3), 5932-5941. https://doi.org/10.1016/j.asoc.2015.07.008
[3]. Atsalakis, G. S., & Valavanis, K. P. (2010). Surveying
stock market forecasting techniques-Part I: Conventional
methods. Journal of Computational Optimization in
Economics and Finance, 2(1), 45-92.
[4]. Beck, T., & Levine, R. (2004). Stock markets, banks, and
growth: Panel evidence. Journal of Banking & Finance,
28(3), 423-442. https://doi.org/10.1016/S0378-4266(02)00408-9
[5]. Biswal, A., (2022). Stock Price Prediction Using
Machine Learning: An Easy Guide. Retrieved from https://www.simplilearn.com/tutorials/machine-learning-tutorial/stock-price-prediction-using-machine-learning.
[6]. Bohn, T. A. (2017). Improving Long Term Stock Market
Prediction with Text Analysis. M.S. Thesis, Western University,
London, Canada.
[7]. Bouktif, S., Fiaz, A., & Awad, M. (2020). Augmented
textual features-based stock market prediction. IEEE
Access, 8, 40269-40282. https://doi.org/10.1109/ACCESS.2020.2976725
[8]. Chavan, P. S., & Patil, S. T. (2013). Parameters for stock
market prediction. International Journal of Computer
Technology and Applications, 4(2), 337.
[9]. Chong, E., Han, C., & Park, F. C. (2017). Deep learning
networks for stock market analysis and prediction:
Methodology, data representations, and case studies.
Expert Systems with Applications, 83, 187-205. https://doi.org/10.1016/j.eswa.2017.04.030
[10]. Gupta, A., & Dhingra, B. (2012, March). Stock market
prediction using hidden markov models. In 2012, Students
Conference on Engineering and Systems (pp. 1-4). IEEE.
https://doi.org/10.1109/SCES.2012.6199099
[11]. Holland, J. H. (1992). Adaptation in Natural and
Artificial Systems: An Introductory Analysis With
Applications to Biology, Control, and Artificial Intelligence.
MIT press.
[12]. Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E. W. T., & Liu, M.
(2015). Application of evolutionary computation for rule
discovery in stock algorithmic trading: A literature review.
Applied Soft Computing, 36, 534-551.
[13]. Jasic, T., & Wood, D. (2004). The profitability of daily
stock market indices trades based on neural network
predictions: Case study for the S&P 500, the DAX, the TOPIX
and the FTSE in the period 1965–1999. Applied Financial
Economics, 14(4), 285-297. https://doi.org/10.1080/0960310042000201228
[14]. Kim, K. J., & Han, I. (2000). Genetic algorithms
approach to feature discretization in artificial neural
networks for the prediction of stock price index. Expert
Systems with Applications, 19(2), 125-132. https://doi.org/10.1016/S0957-4174(00)00027-0
[15]. Kim, M. J., Min, S. H., & Han, I. (2006). An evolutionary
approach to the combination of multiple classifiers to
predict a stock price index. Expert Systems with
Applications, 31(2), 241-247. https://doi.org/10.1016/j.eswa.2005.09.020
[16]. Lee, M. C. (2009). Using support vector machine with
a hybrid feature selection method to the stock trend
prediction. Expert Systems with Applications, 36(8),
10896-10904.
[17]. Liao, Z., & Wang, J. (2010). Forecasting model of global stock index by stochastic time effective neural
network. Expert Systems with Applications, 37(1), 834-841.
https://doi.org/10.1016/j.eswa.2009.05.086
[18]. Milosevic, N. (2016). Equity forecast: Predicting long
term stock price movement using machine learning.
arXiv preprint arXiv:1603.00751.
[19]. Schumaker, R. P., & Chen, H. (2009). Textual analysis
of stock market prediction using breaking financial news:
The AZFin text system. ACM Transactions on Information
Systems (TOIS), 27(2), 1-19.
[20]. Wei, C. C., Chen, T. T., & Lee, S. J. (2013, July). K-NN
based neuro-fuzzy system for time series prediction. In
2013, 14th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (pp. 569-574). IEEE.
[21]. Weng, B., Lu, L., Wang, X., Megahed, F. M., &
Martinez, W. (2018). Predicting short-term stock prices
using ensemble methods and online data sources. Expert
Systems with Applications, 112, 258-273. https://doi.org/10.1016/j.eswa.2018.06.016
[22]. Yeh, C. Y., Huang, C. W., & Lee, S. J. (2011). A
multiple-kernel support vector regression approach for
stock market price forecasting. Expert Systems with
Applications, 38(3), 2177-2186. https://doi.org/10.1016/j.eswa.2010.08.004
[23]. Zhang, G., Xu, L., & Xue, Y. (2017). Model and
forecast stock market behavior integrating investor
sentiment analysis and transaction data. Cluster
Computing, 20(1), 789-803.