A Survey of Deep Learning Techniques in the Field of Sentiment Analysis for the Hindi Language

Vijay Kumar Soni*, Smita Selot**
* Department of Computer Science and Engineering, Chandigarh University, Punjab, India.
** Department of Computer Applications, Shri Shankaracharya Technical Campus, Bhilai, India.
Periodicity:March - May'2022
DOI : https://doi.org/10.26634/jcom.10.1.18752

Abstract

In the domain of natural language processing, sentiment analysis is an important field for any review. Nowadays Indian languages are more popular for any product review. In North India, Hindi is the most widely used language. People having Hindi as their mother tongue can easily express their opinions and thoughts through that language. In the field of research, Hindi language has many challenges due to very less research work, limited data for analysis and less size of corpus data. Deep learning techniques are currently used for predicting feelings. Recurrent Neural Network (RNN), particularly the Long Short Term Memory (LSTM) and Convolution Neural Network (CNN), are two generally used deep learning approaches. Depending on the domain area of application, the strategies are utilized in combinations or as stand-alone procedures. This review paper emphases on the numerous flavours of deep learning approaches employed in various applications of sentiment analysis at the sentence and aspect levels.

Keywords

Natural Language Processing (NLP), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Convolution Neural Network (CNN), Deep Learning (DL), Sentiment Analysis (SA).

How to Cite this Article?

Soni, V. K., and Selot, S. (2022). A Survey of Deep Learning Techniques in the Field of Sentiment Analysis for the Hindi Language. i-manager’s Journal on Computer Science, 10(1), 27-36. https://doi.org/10.26634/jcom.10.1.18752

References

[1]. Akhtar, M. S., Kumar, A., Ekbal, A., & Bhattacharyya, P. (2016). A hybrid deep learning architecture for sentiment analysis. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 482-493.
[2]. Ali, M. A., & Kulkarn, S. B. (2021). Emotion detection and sentiment analysis for hindi movie reviews. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 10(1), 32-38.
[3]. Anusha, M., & Leelavathi, R. (2021). Analysis on sentiment analytics using deep learning techniques. In 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 542-547. https://doi.org/10.1109/I-SMAC52330.2021.9640790
[4]. Artetxe, M., & Schwenk, H. (2019). Massively multilingual sentence embeddings for zero-shot crosslingual transfer and beyond. Transactions of the Association for Computational Linguistics, 7, 597-610. https://doi.org/10.1162/tacl_a_00288
[5]. Bansal, N., & Ahmed, U. Z. (n.d.). Sentiment analysis in hindi. Indian Institute of Technology Kanpur, India, 1-10.
[6]. Byreddy, R. R., Malladi, S., Srikanth, B. V. S. S., & Battula, V. (2022). Analysis of different methodologies for sentiment in hindi language. In Smart Intelligent Computing and Applications, 1, 561-567. https://doi.org/10.1007/978-981-16-9669-5_51
[7]. Chachra, A., Mehndiratta, P., & Gupta, M. (2017). Sentiment analysis of text using deep convolution neural networks. In 2017 Tenth International Conference on Contemporary Computing (IC3), 1-6. https://doi.org/10.1109/IC3.2017.8284327
[8]. Chakravarthi, B. R., Priyadharshini, R., Muralidaran, V., Jose, N., Suryawanshi, S., Sherly, E., & McCrae, J. P. (2022). Dravidiancodemix: Sentiment analysis and offensive language identification dataset for Dravidian languages in code-mixed text. Language Resources and Evaluation, 56, 765-806. https://doi.org/10.1007/s10579-022-09583-7
[9]. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805
[10]. Goularas, D., & Kamis, S. (2019). Evaluation of deep learning techniques in sentiment analysis from twitter data. In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), 12-17. https://doi.org/10.1109/Deep-ML.2019.00011
[11]. Huang, X., Lin, N., Li, K., Wang, L., & Gan, S. (2021). HinPLMs: Pre-trained language models for hindi. In 2021 International Conference on Asian Language Processing (IALP), 241-246. https://doi.org/10.1109/IALP54817.2021.9675194
[12]. Joshi, R., Goel, P., & Joshi, R. (2020). Deep learning for hindi text classification: A comparison. In International Conference on Intelligent Human Computer Interaction, 11886, 94-101. https://doi.org/10.1007/978-3-030-44689-5_9
[13]. Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759. https://doi.org/10.48550/arXiv.1607.01759
[14]. Khalil, E. A. H., El Houby, E. M., & Mohamed, H. K. (2020). Deep learning approach in sentiment analysis: a review. In 2020 15th International Conference on Computer Engineering and Systems (ICCES), 1-10. https://doi.org/10.1109/ICCES51560.2020.9334625
[15]. Kulkarni, D. S., & Rodd, S. S. (2021). Sentiment analysis in hindi—a survey on the state-of-the-art techniques. Transactions on Asian and Low-Resource Language Information Processing, 21(1), 1-46. https://doi.org/10.1145/3469722
[16]. Lagrari, F., & Elkettani, Y. (2021). Traditional and deep learning approaches for sentiment analysis: a survey. Advances in Science, Technology and Engineering Systems Journal, 6(5), 1-7. https://doi.org/10.25046/aj060501
[17]. Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent convolutional neural networks for text classification. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2267–2273.
[18]. Madan, A., & Ghose, U. (2021). Sentiment analysis for twitter data in the hindi language. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 784-789. https://doi.org/10.1109/Confluence51648.2021.9377142
[19]. Mehta, M., Pandey, U., Chaudhary, Y., Sharma, R., Gill, I., Gupta, D., & Khanna, A. (2021). Hindi text classification: a review. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 839-843. https://doi.org/10.1109/ICAC3N53548.2021. 9725517
[20]. Mohbey, K. K. (2021). Sentiment analysis for product rating using a deep learning approach. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 121-126. https://doi.org/10.1109/ICAIS50930.2021.9395802
[21]. Mukherjee, S. (2019). Deep learning technique for sentiment analysis of hindi-english code-mixed text using late fusion of character and word features. In 2019 IEEE 16th India Council International Conference (INDICON), 1-4. https://doi.org/10.1109/INDICON47234.2019.9028928
[22]. Nigam, S., Das, A. K., & Chandra, R. (2018). Machine learning based approach to sentiment analysis. In 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), 157-161. https://doi.org/10.1109/ICACCCN.2018.8748848
[23]. Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543.
[24]. Prabha, M. I., & Srikanth, G. U. (2019). Survey of sentiment analysis using deep learning techniques. In 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), 1-9. https://doi.org/10.1109/ICIICT1.2019.8741438
[25]. Pradhan, R., & Sharma, D. K. (2022). An ensemble deep learning classifier for sentiment analysis on codemix Hindi–English data. Soft Computing, 1-18. https://doi.org/10.1007/s00500-022-07091-y
[26]. Pundlik, S., Dasare, P., Kasbekar, P., Gawade, A., Gaikwad, G., & Pundlik, P. (2016). Multiclass classification and class based sentiment analysis for Hindi language. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 512-518. https://doi.org/10.1109/ICACCI.2016.7732097
[27]. Rakshitha, K., Ramalingam, H. M., Pavithra, M., Advi, H. D., & Hegde, M. (2021). Sentimental analysis of Indian regional languages on social media. Global Transitions Proceedings, 2(2), 414-420. https://doi.org/10.1016/j.gltp.2021.08.039
[28]. Rani, S., & Kumar, P. (2019). Deep learning based sentiment analysis using convolution neural network. Arabian Journal for Science and Engineering, 44(4), 3305-3314. https://doi.org/10.1007/s13369-018-3500-z
[29]. Razali, N. A. M., Malizan, N. A., Hasbullah, N. A., Wook, M., Zainuddin, N. M., Ishak, K. K., ... & Sukardi, S. (2021). Opinion mining for national security: techniques, domain applications, challenges and research opportunities. Journal of Big Data, 8(1), 1-46. https://doi.org/10.1186/s40537-021-00536-5
[30]. Shalini, K., Ganesh, H. B., Kumar, M. A., & Soman, K. P. (2018). Sentiment analysis for code-mixed Indian social media text with distributed representation. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1126-1131. https://doi.org/10.1109/ICACCI.2018.8554835
[31]. Sharma, A. (2020). Hindi text emotion recognition based on deep learning. IOSR Journal of Mobile Computing & Application (IOSR-JMCA), 7(3), 24-29. https://doi.org/10.9790/0050-07032429
[32]. Sharma, R., Le Tan, N., & Sadat, F. (2018). Multimodal sentiment analysis using deep learning. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 1475-1478. https://doi.org/10.1109/ICMLA.2018.00240
[33]. Sharma, Y., Mangat, V., & Kaur, M. (2015). A practical approach to sentiment analysis of Hindi tweets. In 2015 1st International Conference on Next Generation Computing Technologies (NGCT), 677-680. https://doi.org/10.1109/NGCT.2015.7375207
[34]. Shilpa, P. C., Shereen, R., Jacob, S., & Vinod, P. (2021). Sentiment analysis using deep learning. In 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 930-937. https://doi.org/10.1109/ICICV50876.2021.9388382
[35]. Shrestha, H., Dhasarathan, C., Munisamy, S., & Jayavel, A. (2020). Natural language processing based sentimental analysis of Hindi (SAH) script an optimization approach. International Journal of Speech Technology, 23(4), 757-766. https://doi.org/10.1007/s10772-020-09730-x
[36]. Shrivastava, K., & Kumar, S. (2020). A sentiment analysis system for the hindi language by integrating gated recurrent unit with genetic algorithm. International Arab Journal of Information Technology, 17(6), 954-964.
[37]. Sindhu, C., Adak, S., & Tigga, S. C. (2021). Opinionated text classification for hindi tweets using deep learning. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 1217-1222. https://doi.org/10.1109/ICCMC51019.2021.9418361
[38]. Soni, V. K., & Selot, S. (2016). Part of speech tagging approaches in hindi: a literature survey. BITCON.
[39]. Soni, V. K., & Selot, S. (2020). Big data for natural language processing: a survey report. Proceedings of All India Conference on Disruptive Technologies, 545-551.
[40]. Soni, V. K., & Selot, S. (2021a). Classification technique approach in aspect based sentiment analysis: a survey report. AICTE Sponsored National E-Conference on Data Science and Its Applications.
[41]. Soni, V. K., & Selot, S. (2021b). A comprehensive study for the hindi language to implement supervised text classification techniques. In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), 539-544. https://doi.org/10.1109/ISPCC53510.2021.9609401
[42]. Soong, H. C., Ayyasamy, R. K., & Akbar, R. (2021). A review towards deep learning for sentiment analysis. In 2021 International Conference on Computer & Information Sciences (ICCOINS), 238-243. https://doi.org/10.1109/ICCOINS49721.2021.9497233
[43]. Srinivasan, R., & Subalalitha, C. N. (2021). Sentimental analysis from imbalanced code-mixed data using machine learning approaches. Distributed and Parallel Databases, 1-16. https://doi.org/10.1007/s10619-021-07331-4
[44]. Tummalapalli, M., Chinnakotla, M., & Mamidi, R. (2018). Towards better sentence classification for morphologically rich languages. In Proceedings of the International Conference on Computational Linguistics and Intelligent Text Processing.
[45]. Wang, R., Li, Z., Cao, J., Chen, T., & Wang, L. (2019). Convolutional recurrent neural networks for text classification. In 2019 International Joint Conference on Neural Networks (IJCNN), 1-6. https://doi.org/10.1109/IJCNN.2019.8852406
[46]. Wang, W. Y., Li, J., & He, X. (2018). Deep reinforcement learning for NLP. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, 19-21. https://doi.org/10.18653/v1/P18-5007
[47]. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55, 5731–5780. https://doi.org/10.1007/s10462-022-10144-1
[48]. Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4). https://doi.org/10.1002/widm
[49]. Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., & Xu, B. (2016). Attention-based bidirectional long short-term memor y networks for relation classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2, 207-212.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.