References
[1]. Aizenberg, I. N., Butakoff, C., Karnaukhov, V. N.,
Merzlyakov, N. S., & Milukova, O. (2002, May). Blurred
image restoration using the type of blur and blur parameter identification on the neural network. In Image
Processing: Algorithms and Systems (Vol. 4667, pp. 460-471). SPIE. https://doi.org/10.1117/12.468009
[2]. Bhavani, S, L., & Hema, M. (2021). Detection and
classification of blur images using Multi-Class Support
Vector Machine. International Journal of Engineering
Research & Technology (IJERT), 10(11). https://doi.org/10.17577/IJERTV10IS110150
[3]. Ciancio, A., da Silva, E. A., Said, A., Samadani, R., &
Obrador, P. (2010). No-reference blur assessment of
digital pictures based on multifeature classifiers. IEEE
Transactions on Image Processing, 20(1), 64-75.
https://doi.org/10.1109/TIP.2010.2053549
[4]. Da Rugna, J., & Konik, H. (2003, December).
Automatic blur detection for meta-data extraction in
content-based retrieval context. Proceedings of SPIE: Internet Imaging V, 5304, 285-294. https://doi.org/10.1117/12.526949
[5]. Gonzalez, R. C., & Woods, R. E. (2002). Digital Image
Processing (pp. 550-570). Pearson Education India
[6]. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 770-778).
[7]. Jiang, Y., Yang, F., Zhu, H., Zhou, D., & Zeng, X. (2020).
Nonlinear CNN: Improving CNNs with quadratic
convolutions. Neural Computing and Applications,
32(12), 8507-8516. https://doi.org/10.1007/s00521-019-04316-4
[8]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet classification with deep convolutional neural
networks. Advances in Neural Information Processing
Systems, 25, 1097-1105.
[9]. Marziliano, P., Dufaux, F., Winkler, S., & Ebrahimi, T.
(2002, September). A no-reference perceptual blur
metric. In Proceedings of the International Conference
on Image Processing (IEEE IClP 2002) (pp. III-57 – III-60).
https://doi.org/10.1109/ICIP.2002.1038902
[10]. Prishchepov, A. V., Radeloff, V. C., Dubinin, M., &
Alcantara, C. (2012). The effect of Landsat ETM/ETM+
image acquisition dates on the detection of agricultural
land abandonment in Eastern Europe. Remote Sensing of
Environment, 126, 195-209. https://doi.org/10.1016/j.rse.2012.08.017
[11]. Qiao, J., & Liu, J. (2006, October). A SVM-based blur
identification algorithm for image restoration and
resolution enhancement. In International Conference on Knowledge-Based and Intelligent Information and
Engineering Systems (pp. 28-35). https://doi.org/10.1007/11893004_4
[12]. Roberts, L. G. (1965). Machine perception of threedimensional
solids, Optical and Electro-Optical
Information Processing. MIT Press, Cambridge, MA, 159-197.
[13]. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., ... & Rabinovich, A. (2015). Going deeper
with convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (pp. 1-9).
[14]. Tong, H., Li, M., Zhang, H., & Zhang, C. (2004, June).
Blur detection for digital images using wavelet transform.
In 2004, IEEE International Conference on Multimedia
and Expo (ICME) (pp. 17-20). IEEE. https://doi.org/10.1109/ICME.2004.1394114
[15]. Wang, R., Li, R., & Sun, H. (2016). Haze removal
based on multiple scattering model with superpixel
algorithm. Signal Processing, 127, 24-36. https://doi.org/10.1016/j.sigpro.2016.02.003
[16]. Wang, R., Li, W., Qin, R., & Wu, J. (2017, October).
Blur image classification based on deep learning. In
2017, Proceedings of IEEE International Conference on
Imaging Systems and Techniques (IST). IEEE.
https://doi.org/10.1109/IST.2017.8261503
[17]. Yang, D., & Qin, S. (2015, August). Restoration of
degraded image with partial blurred regions based on
blur detection and classification. In 2015, Proceedings of
IEEE International Conference on Mechatronics and
Automation (ICMA) (pp. 2414-2419). IEEE. https://doi.org/10.1109/ICMA.2015.7237865