References
[1]. Abd El-Wahed, W. F. (2001). A multi-objective transportation problem under fuzziness. Fuzzy Sets and Systems, 117(1),
27-33. https://doi.org/10.1016/S0165-0114(98)00155-9
[2]. Akilbasha, A., Pandian, P., & Natarajan, G. (2018). An innovative exact method for solving fully interval integer
transportation problems. Informatics in Medicine Unlocked, 11, 95-99. https://doi.org/10.1016/j.imu.2018.04.007
[3]. Ammar, E. E., & Youness, E. A. (2005). Study on multiobjective transportation problem with fuzzy numbers. Applied
Mathematics and Computation, 166(2), 241-253. https://doi.org/10.1016/j.amc.2004.04.103
[4]. Aneja, Y. P., & Nair, K. P. (1979). Bicriteria transportation problem. Management Science, 25(1), 73-78. https://doi.org/10.1287/mnsc.25.1.73
[5]. Bit, A. K., Biswal, M. P., & Alam, S. (1992). Fuzzy programming approach to multicriteria decision making transportation
problem. Fuzzy Sets and Systems, 50(2), 135-141. https://doi.org/10.1016/0165-0114(92)90212-M
[6]. Chanas, S., & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost
coefficients. Fuzzy Sets and Systems, 82(3), 299-305.
[7]. Das, S. K., Goswami, A., & Alam, S. S. (1999). Multiobjective transportation problem with interval cost, source and
destination parameters. European Journal of Operational Research, 117(1), 100-112. https://doi.org/10.1016/S0377-2217(98)00044-7
[8]. Gallagher, R. J., & Saleh, O. A. (1994). Constructing the set of efficient objective values in linear multiple objective
transportation problems. European Journal of Operational Research, 73(1), 150-163. https://doi.org/10.1016/0377-2217(94)90154-6
[9]. Gupta, A., & Kumar, A. (2012). A new method for solving linear multi-objective transportation problems with fuzzy
parameters. Applied Mathematical Modelling, 36(4), 1421-1430. https://doi.org/10.1016/j.apm.2011.08.044
[10]. Gupta, A., Kumar, A., & Kaur, A. (2012). Mehar's method to find exact fuzzy optimal solution of unbalanced fully fuzzy
multi-objective transportation problems. Optimization Letters, 6(8), 1737-1751. https://doi.org/10.1007/s11590-011-0367-2
[11]. Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of
Mathematics and Physics, 20(1-4), 224-230. https://doi.org/10.1002/sapm1941201224
[12]. Ignizio, J. P. (1976). Goal Programming and Extensions. Washington, D.C: Lexington Books.
[13]. Isermann, H. (1979). The enumeration of all efficient solutions for a linear multiple‐objective transportation problem.
Naval Research Logistics Quarterly, 26(1), 123-139. https://doi.org/10.1002/nav.3800260112
[14]. Keshavarz, E., & Khorram, E. (2011). A fuzzy bi-criteria transportation problem. Computers & Industrial Engineering,
61(4), 947-957. https://doi.org/10.1016/j.cie.2011.06.007
[15]. Kirca, Ö., & Şatir, A. (1990). A heuristic for obtaining and initial solution for the transportation problem. Journal of the
Operational Research Society, 41(9), 865-871. https://doi.org/10.1057/jors.1990.124
[16]. Lee, S. M. (1972). Goal Programming for Decision Analysis. PA: Philadelphia, Auer Bach Publishers.
[17]. Li, L., & Lai, K. K. (2000). A fuzzy approach to the multiobjective transportation problem. Computers & Operations
Research, 27(1), 43-57. https://doi.org/10.1016/S0305-0548(99)00007-6
[18]. Maity, G., Roy, S. K., & Verdegay, J. L. (2019). Time variant multi-objective interval-valued transportation problem in
sustainable development. Sustainability, 11(21), 6161. https://doi.org/10.3390/su11216161
[19]. Natarajan, P. P. G. (2010). A new method for finding an optimal solution of fully interval integer transportation problems.
Applied Mathematical Sciences, 4(37), 1819-1830.
[20]. Nomani, M. A., Ali, I., & Ahmed, A. (2017). A new approach for solving multi-objective transportation problems.
International Journal of Management Science and Engineering Management, 12(3), 165-173. https://doi.org/10.1080/17509653.2016.1172994
[21]. Ojha, A., Mondal, S. K., & Maiti, M. (2011). Transportation policies for single and multi-objective transportation problem
using fuzzy logic. Mathematical and Computer Modelling, 53(9-10), 1637-1646. https://doi.org/10.1016/j.mcm.2010.12.029
[22]. Pandian, P., & Natarajan, G. (2010). A new algorithm for finding a fuzzy optimal solution for fuzzy transportation
problems. Applied Mathematical Sciences, 4(2), 79-90.
[23]. Pandian, P., & Anuradha, D. (2011). A new method for solving bi-objective transportation problems. Australian Journal
of Basic and Applied Sciences, 5(10), 67-74.
[24]. Prabhavati, B. S. S., & Ravindranath, V. (2020a). A simple and efficient method to solve fully interval and fuzzy
transportation problems, International Journal Mathematics in Operational Research, (In Press).
[25]. Prabhavati, S., & Ravindranath, V. (2020b). A New Approach for Finding a Better Initial Feasible Solution to Balanced or
Unbalanced Transportation Problems. In Numerical Optimization in Engineering and Sciences (pp. 359-369). Springer,
Singapore. https://doi.org/10.1016/j.matpr.2021.01.175
[26]. Ringuest, J. L., & Rinks, D. B. (1987). Interactive solutions for the linear multiobjective transportation problem. European
Journal of Operational Research, 32(1), 96-106. https://doi.org/10.1016/0377-2217(87)90274-8
[27]. Saaty, T. L. (1994). How to make a decision: The analytic hierarchy process. Interfaces, 24(6), 19-43. https://doi.org/10.
1287/inte.24.6.19
[28]. Sharma, J. K. (2006). Operations Research Theory and Application (3rd ed). Macmillan India Ltd.
[29]. Sudha, G., & Ganesan, K. (2021). A solution approach to time variant multi-objective interval transportation problems
in material aspects. Materials Today: Proceedings. Advance Online Publication. https://doi.org/10.1016/j.matpr.2021.01.175
[30]. Taha, H. A. (2006). Operation Research- An Introduction, (8th ed). Prentice-Hall of India.
[31]. Venkatasubbaiah, K., Acharyulu, S G., & Mouli, K. V. V. C. (2011). Fuzzy goal programming method for solving multiobjective
transportation problems. Global Journal of Research in Engineering, 11(3), 4-10.
[32]. Zaki, S. A., Abd Allah, A. M., Geneedi, H. M., & Elmekawy, A. Y. (2012). Efficient multiobjective genetic algorithm for
solving transportation, assignment, and transshipment problems. Applied Mathematics, 3(1), 92-99. https://doi.org/10.4236/am.2012.31015