Synthesis of SrBaFexMo2-xO6 (X=1.0, 1.1, 1.3 and 1.4) Double Perovskites by Sonication: Characterization and Electron Spin Resonance Studies

S. Varaprasad*, G. Laxminarayana**, M. Ramana***, A. Ramachander Rao****, L. Koteswara Rao*****
* Electro-Optical Instrument Research Academy, Vignyanakancha, Hyderabad, Telangana, India.
**-**** Research Centre Imarat, Vignyanakancha, Hyderabad, Telangana, India.
***** Koneru Lakshmaiah University, Hyderabad, Telangana, India.
Periodicity:April - June'2022


This paper presents influence of ultrasound-assisted method on structure, tolerance factor, density and Electron spin resonance studies of SrBaFexMo2-xO6 (x = 1.0, 1.1, 1.3 and 1.4) (SBFMO) double perovskite. SrBaFexMo2-xO6 double perovskite was synthesized by sonochemical procedure at low temperature (9500C) under Ar/ H2 atmosphere. X-ray diffraction studies revealed a single phase with a cubic crystal structure for all the samples. The existence of all elements (Sr, Ba, Fe, Mo, O) contamination-free in the required percentage in SBFMO compound has been analyzed by Energy Dispersive X-ray Spectroscopy (EDS). Goldschmidt Tolerance factor 't' has been used to quantitatively predict the stability and closeness of A2BxB12-xO6. Density measurements for all samples of SrBaFexMo2-xO6 (x = 1.0, 1.1, 1.3 and 1.4) were done both theoretically and experimentally. Electron Spin Resonance (ESR) spectra of SrBaFexMo2-xO6 (x = 1.0, 1.1, 1.3 and 1.4) were studied to determine the iron state in the compound by varying magnetic field at a constant frequency (X-Band).


Double Perovskite, Sonochemical, Characterization, Magnetic Properties.

How to Cite this Article?

Varaprasad, S., Laxminarayana, G., Ramana, M., Rao, A. R., and Rao, L. K. (2022). Synthesis of SrBaFexMo2-x O6 (X=1.0, 1.1, 1.3 And 1.4) Double Perovskites by Sonication: Characterization and Electron Spin Resonance Studies. i-manager’s Journal on Material Science, 10(1), 1-8.


[1]. Aldica, G., Plapcianu, C., Badica, P., Valsangiacom, C., & Stoica, L. (2007). Synthesis by oxalic (citric) route and electrical and magnetic characterization of Sr2FeMoO6 perovskite. Journal of Magnetism and Magnetic Materials, 311(2), 665-670.
[2]. Alonso, J. L., Fernández, L. A., Guinea, F., Lesmes, F., & Martín-Mayor, V. (2003). Phase diagram and influence of defects in the double perovskites. Physical Review B, 67(21), 214423.
[3]. Charoonsuk, T., Vittayakorn, W., Vittayakorn, N., Seeharaj, P., & Maensiri, S. (2015). Sonochemical synthesis of monodispersed perovskite barium zirconate (BaZrO3) by using an ethanol–water mixed solvent. Ceramics International, 41, 87-94.
[4]. Dutta, D. P., & Tyagi, A. K. (2016). Weak room temperature ferromagnetism and ferroelectric behavior in sonochemically synthesized bismuth and iron codoped SrTiO3 nanoparticles. Materials Letters, 164, 368-371.
[5]. Feng, X. M., Rao, G. H., Liu, G. Y., Yang, H. F., Liu, W. F., Ouyang, Z. W., & Liang, J. K. (2004). Effects of Cr doping on the cationic ordering and magnetic properties of Sr2 (Fe1-x Crx )MoO6. Physica B: Condensed Matter, 344(1-4), 21-26.
[6]. Goko, T., Endo, Y., Morimoto, E., Arai, J., & Matsumoto, T. (2003). Pressure effect on transport and magnetic properties of A2 FeMoO6 (A= Ba, Sr). Physica B: Condensed Matter, 329, 837-839.
[7]. Kim, J. H., Ahn, G. Y., Park, S. I., & Kim, C. S. (2004). Effects of Cr doping on magnetic properties of ordered Sr2FeMoO6. Journal of Magnetism and Magnetic Materials, 282, 295-298.
[8]. Kim, T. H., Uehara, M., Cheong, S. W., & Lee, S. (1999). Large room-temperature intergrain magnetoresistance in double perovskite SrFe1-x (MoorRe)xO3. Applied Physics Letters, 74(12), 1737-1739.
[9]. Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., & Tokura, Y. (1998). Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 395(6703), 677-680.
[10]. Kobayashi, K. I., Kimura, T., Tomioka, Y., Sawada, H., Terakura, K., & Tokura, Y. (1999). Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr2FeReO6. Physical Review B, 59(17), 11159.
[11]. Liang, P., Jiang, J. J., Ma, X. G., & Tian, B. (2007). Nature of magnetic and electronic structure of double perovskite A2FeMoO6. Transactions of Nonferrous Metals Society of China, 17, 109-112.
[12]. Liu, G. Y., Rao, G. H., Feng, X. M., Yang, H. F., Ouyang, Z. W., Liu, W. F., & Liang, J. K. (2003). Structural transition and atomic ordering in the non-stoichiometric double perovskite Sr2FexMo2-xO6. Journal of Alloys and Compounds, 353(1-2), 42-47.
[13]. Liu, G.Y., Rao, G. H., Feng, Z. W., Ouyang, W. F., Liu, J. K., & Liang. (2003). Metal-semicondoctor transition in non-stoichiometry double perovskite Sr2FexMo2-xO6. Physics, 334, (pp. 229).
[14]. Lü, M., Li, J., Hao, X., Yang, Z., Zhou, D., & Meng, J. (2008). Hole doping double perovskites Sr2FeMo1-xO6 (x = 0, 0.03, 0.04, 0.06) and and their Mössbauer, crystal structure and magnetic properties. Journal of Physics: Condensed Matter, 20(17), 175213.
[15]. Maignan, A., Raveau, B., Martin, C., & Hervieu, M. (1999). Large intragrain magnetoresistance above room temperature in the double perovskite Ba2FeMoO6. Journal of Solid State Chemistry, 144(1), 224-227.
[16]. Markandeya, Y., Suresh, K., & Bhikshamaiah, G. (2011). Strong correlation between structural, magnetic and transport properties of non-stoichiometric Sr2FexMo2-xO6 (0.8≤ x≤ 1.5) double perovskites. Journal of Alloys and Compounds, 509(40), 9598-9603.
[17]. Mishra, R., Restrepo, O. D., Woodward, P. M., & Windl, W. (2010). First-principles study of defective and nonstoichiometric Sr2FeMoO6. Chemistry of Materials, 22(22), 6092-6102.
[18]. Moghtada, A., & Ashiri, R. (2016). Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method. Ultrasonics Sonochemistry, 33, 141-149.
[19]. Moghtada, A., & Ashiri, R. (2018). Superiority of sonochemical processing method for the synthesis of barium titanate nanocr ystals in contrast to the mechano chemical approach. Ultrasonics Sonochemistry, 41, 127-133.
[20]. Moghtada, A., Shahrouzianfar, A., & Ashiri, R. (2017). Low-temperature ultrasound synthesis of nanocrystals CoTiO3 without a calcination step: effect of ultrasonic waves on formation of the crystal growth mechanism. Advanced Powder Technology, 28(4), 1109-1117.
[21]. Moritomo, Y., Xu, S., Machida, A., Akimoto, T., Nishibori, E., Takata, M., & Sakata, M. (2000). Electronic structure of double-perovskite transition-metal oxides. Physical Review B, 61(12).
[22]. Pandey, V., Verma, V., Aloysius, R. P., Bhalla, G. L., Awana, V. P. S., Kishan, H., & Kotnala, R. K. (2009). Magnetic and magneto-transport properties of double perovskite Ba2-xSrxFeMoO6 system. Journal of Magnetism and Magnetic Materials, 321(14), 2239-2244.
[23]. Retuerto, M., Martinez-Lope, M. J., Garcia- Hernandez, M., & Alonso, J. A. (2009). High-pressure synthesis of the double perovskite Sr2FeMoO6 : increment of the cationic ordering and enhanced magnetic properties. Journal of Physics: Condensed Matter, 21(18), 186003.
[24]. Topwal, D., Sarma, D. D., Kato, H., Tokura, Y., & Avignon, M. (2006). Structural and magnetic properties of Sr2Fe1+xMo1-xO6 (−1⩽x⩽0.25). Physical Review B, 73(9), 094419.
[25]. Utara, S., & Hunpratub, S. (2018). Ultrasonic assisted synthesis of BaTiO3 nanoparticles at 25°C and atmospheric pressure. Ultrasonics Sonochemistry, 41, 441-448.
[26]. Valsangiacom, C., Plapcianu, C., Stoica, L., Aldica, G., & Kuncser, V. (2008). Peculiar structural effect of Sr2FeMoO6 perovskite type compounds. Journal of Optoelectronics and Advanced Materials, 10(4), 845-848.
[27]. Vegard, L. (1921). Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik, 5(1), 17-26.
[28]. Wattanawikkam, C., & Pecharapa, W. (2016). Sonochemical synthesis, characterization, and photocatalytic activity of perovskite ZnTiO3 nanopowders. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 63(10), 1663-1667.
[29]. Xiao-Jun, L., Qiao-Jian, H., Dong-Lin, N., Sheng, X., & Shu-Yi, Z. (2004). Thermal Diffusivity of Ordered Double Perovskite A2FeMoO6 (A= Ca, Sr and Ba). Chinese Physics Letters, 21(11), 2281.
[30]. Yang, C. W., & Fang, T. T. (2011). Structures and development mechanism of the anti-phase boundaries in Sr2FeMoO6. Journal of the Electrochemical Society, 159(3), 35.
[31]. Yang, H. M., Han, H., & Lee, B. W. (2004). Magnetic properties of double perovskites Ba2-xLa2FeMoO6. Journal of Magnetism and Magnetic Materials, 272, 1831-1833.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.