References
[1]. Aldica, G., Plapcianu, C., Badica, P., Valsangiacom,
C., & Stoica, L. (2007). Synthesis by oxalic (citric) route and
electrical and magnetic characterization of Sr2FeMoO6
perovskite. Journal of Magnetism and Magnetic
Materials, 311(2), 665-670. https://doi.org/10.1016/j.jmmm.2006.08.031
[2]. Alonso, J. L., Fernández, L. A., Guinea, F., Lesmes, F., &
Martín-Mayor, V. (2003). Phase diagram and influence of
defects in the double perovskites. Physical Review B,
67(21), 214423. https://doi.org/10.1103/PhysRevB.67.214423
[3]. Charoonsuk, T., Vittayakorn, W., Vittayakorn, N.,
Seeharaj, P., & Maensiri, S. (2015). Sonochemical
synthesis of monodispersed perovskite barium zirconate
(BaZrO3) by using an ethanol–water mixed solvent.
Ceramics International, 41, 87-94. https://doi.org/10.1016/j.ceramint.2015.03.190
[4]. Dutta, D. P., & Tyagi, A. K. (2016). Weak room
temperature ferromagnetism and ferroelectric behavior
in sonochemically synthesized bismuth and iron
codoped SrTiO3 nanoparticles. Materials Letters, 164,
368-371. https://doi.org/10.1016/j.matlet.2015.11.045
[5]. Feng, X. M., Rao, G. H., Liu, G. Y., Yang, H. F., Liu, W. F.,
Ouyang, Z. W., & Liang, J. K. (2004). Effects of Cr doping
on the cationic ordering and magnetic properties of Sr2 (Fe1-x Crx )MoO6. Physica B: Condensed Matter, 344(1-4),
21-26. https://doi.org/10.1016/j.physb.2003.08.115
[6]. Goko, T., Endo, Y., Morimoto, E., Arai, J., & Matsumoto,
T. (2003). Pressure effect on transport and magnetic
properties of A2 FeMoO6 (A= Ba, Sr). Physica B: Condensed
Matter, 329, 837-839. https://doi.org/10.1016/S0921-4526(02)02537-1
[7]. Kim, J. H., Ahn, G. Y., Park, S. I., & Kim, C. S. (2004).
Effects of Cr doping on magnetic properties of ordered
Sr2FeMoO6. Journal of Magnetism and Magnetic
Materials, 282, 295-298. https://doi.org/10.1016/j.jmmm.2004.04.069
[8]. Kim, T. H., Uehara, M., Cheong, S. W., & Lee, S. (1999).
Large room-temperature intergrain magnetoresistance in
double perovskite SrFe1-x (MoorRe)xO3. Applied Physics
Letters, 74(12), 1737-1739. https://doi.org/10.1063/1.123672
[9]. Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., &
Tokura, Y. (1998). Room-temperature magnetoresistance
in an oxide material with an ordered double-perovskite
structure. Nature, 395(6703), 677-680. https://doi.org/10.1038/27167
[10]. Kobayashi, K. I., Kimura, T., Tomioka, Y., Sawada, H.,
Terakura, K., & Tokura, Y. (1999). Intergrain tunneling
magnetoresistance in polycrystals of the ordered double
perovskite Sr2FeReO6. Physical Review B, 59(17), 11159.
https://doi.org/10.1103/PhysRevB.59.11159
[11]. Liang, P., Jiang, J. J., Ma, X. G., & Tian, B. (2007).
Nature of magnetic and electronic structure of double
perovskite A2FeMoO6. Transactions of Nonferrous Metals
Society of China, 17, 109-112.
[12]. Liu, G. Y., Rao, G. H., Feng, X. M., Yang, H. F.,
Ouyang, Z. W., Liu, W. F., & Liang, J. K. (2003). Structural
transition and atomic ordering in the non-stoichiometric
double perovskite Sr2FexMo2-xO6. Journal of Alloys and
Compounds, 353(1-2), 42-47. https://doi.org/10.1016/S0925-8388(02)01316-6
[13]. Liu, G.Y., Rao, G. H., Feng, Z. W., Ouyang, W. F., Liu, J.
K., & Liang. (2003). Metal-semicondoctor transition in
non-stoichiometry double perovskite Sr2FexMo2-xO6.
Physics, 334, (pp. 229).
[14]. Lü, M., Li, J., Hao, X., Yang, Z., Zhou, D., & Meng, J.
(2008). Hole doping double perovskites Sr2FeMo1-xO6 (x = 0, 0.03, 0.04, 0.06) and and their Mössbauer, crystal
structure and magnetic properties. Journal of Physics:
Condensed Matter, 20(17), 175213.
[15]. Maignan, A., Raveau, B., Martin, C., & Hervieu, M.
(1999). Large intragrain magnetoresistance above room
temperature in the double perovskite Ba2FeMoO6. Journal
of Solid State Chemistry, 144(1), 224-227. https://doi.org/10.1006/jssc.1998.8129
[16]. Markandeya, Y., Suresh, K., & Bhikshamaiah, G.
(2011). Strong correlation between structural, magnetic and
transport properties of non-stoichiometric Sr2FexMo2-xO6 (0.8≤ x≤ 1.5) double perovskites. Journal of Alloys and
Compounds, 509(40), 9598-9603. https://doi.org/10.1016/j.jallcom.2011.06.108
[17]. Mishra, R., Restrepo, O. D., Woodward, P. M., &
Windl, W. (2010). First-principles study of defective and
nonstoichiometric Sr2FeMoO6. Chemistry of Materials,
22(22), 6092-6102. https://doi.org/10.1021/cm101587e
[18]. Moghtada, A., & Ashiri, R. (2016). Enhancing the
formation of tetragonal phase in perovskite nanocrystals
using an ultrasound assisted wet chemical method.
Ultrasonics Sonochemistry, 33, 141-149. https://doi.org/10.1016/j.ultsonch.2016.05.002
[19]. Moghtada, A., & Ashiri, R. (2018). Superiority of
sonochemical processing method for the synthesis of
barium titanate nanocr ystals in contrast to the
mechano chemical approach. Ultrasonics
Sonochemistry, 41, 127-133. https://doi.org/10.1016/j.ultsonch.2017.09.037
[20]. Moghtada, A., Shahrouzianfar, A., & Ashiri, R. (2017).
Low-temperature ultrasound synthesis of nanocrystals
CoTiO3 without a calcination step: effect of ultrasonic
waves on formation of the crystal growth mechanism.
Advanced Powder Technology, 28(4), 1109-1117. https://doi.org/10.1016/j.apt.2016.11.004
[21]. Moritomo, Y., Xu, S., Machida, A., Akimoto, T.,
Nishibori, E., Takata, M., & Sakata, M. (2000). Electronic
structure of double-perovskite transition-metal oxides.
Physical Review B, 61(12). https://doi.org/10.1103/PhysRevB.61.R7827
[22]. Pandey, V., Verma, V., Aloysius, R. P., Bhalla, G. L.,
Awana, V. P. S., Kishan, H., & Kotnala, R. K. (2009).
Magnetic and magneto-transport properties of double
perovskite Ba2-xSrxFeMoO6 system. Journal of Magnetism and Magnetic Materials, 321(14), 2239-2244. https://doi.org/10.1016/j.jmmm.2009.01.032
[23]. Retuerto, M., Martinez-Lope, M. J., Garcia-
Hernandez, M., & Alonso, J. A. (2009). High-pressure
synthesis of the double perovskite Sr2FeMoO6 : increment
of the cationic ordering and enhanced magnetic
properties. Journal of Physics: Condensed Matter, 21(18),
186003. https://doi.org/10.1088/0953-8984/21/18/186003
[24]. Topwal, D., Sarma, D. D., Kato, H., Tokura, Y., &
Avignon, M. (2006). Structural and magnetic properties of
Sr2Fe1+xMo1-xO6 (−1⩽x⩽0.25). Physical Review B, 73(9), 094419. https://doi.org/10.1103/PhysRevB.73.094419
[25]. Utara, S., & Hunpratub, S. (2018). Ultrasonic assisted
synthesis of BaTiO3 nanoparticles at 25°C and
atmospheric pressure. Ultrasonics Sonochemistry, 41,
441-448. https://doi.org/10.1016/j.ultsonch.2017.10.008
[26]. Valsangiacom, C., Plapcianu, C., Stoica, L., Aldica,
G., & Kuncser, V. (2008). Peculiar structural effect of
Sr2FeMoO6 perovskite type compounds. Journal of
Optoelectronics and Advanced Materials, 10(4), 845-848.
[27]. Vegard, L. (1921). Die konstitution der mischkristalle
und die raumfüllung der atome. Zeitschrift für Physik, 5(1),
17-26. https://doi.org/10.1007/BF01349680
[28]. Wattanawikkam, C., & Pecharapa, W. (2016).
Sonochemical synthesis, characterization, and
photocatalytic activity of perovskite ZnTiO3 nanopowders.
IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, 63(10), 1663-1667. https://doi.org/10.1109/TUFFC.2016.2593002
[29]. Xiao-Jun, L., Qiao-Jian, H., Dong-Lin, N., Sheng, X.,
& Shu-Yi, Z. (2004). Thermal Diffusivity of Ordered Double
Perovskite A2FeMoO6 (A= Ca, Sr and Ba). Chinese Physics
Letters, 21(11), 2281.
[30]. Yang, C. W., & Fang, T. T. (2011). Structures and development mechanism of the anti-phase boundaries
in Sr2FeMoO6. Journal of the Electrochemical Society, 159(3), 35.
[31]. Yang, H. M., Han, H., & Lee, B. W. (2004). Magnetic properties of double perovskites Ba2-xLa2FeMoO6. Journal of Magnetism and Magnetic Materials, 272, 1831-1833. https://doi.org/10.1016/j.jmmm.2003.12.430