References
[1]. AL-Ameeri, A. (2013). The effect of steel fiber on some
mechanical properties of self-compacting concrete,
American Journal of Civil Engineering, 1(3), 102-110.
https://doi.org/10.11648/j.ajce.20130103.14
[2]. Avci-Karatas, C. (2019). Prediction of ultimate load
capacity of concrete-filled steel tube columns using
multivariate adaptive regression splines (MARS), Steel and
Composite Structures,33(4),583-594. https://doi.org/10.12989/scs.2019.33.4.583
[3]. Caesarendra, W., Widodo, A., & Yang, B. S. (2010).
Application of relevance vector machine and logistic
regression for machine degradation assessment.
Mechanical Systems and Signal Processing, 24(4), 1161-1171. https://doi.org/10.1016/j.ymssp.2009.10.011
[4]. Cheng, M. Y., & Cao, M. T. (2016). Estimating strength
of rubberized concrete using evolutionary multivariate
adaptive regression splines. Journal of Civil Engineering
and Management, 22(5), 711-720. https://doi.org/10.3846/13923730.2014.897989
[5]. da Silva, M. A., Pepe, M., de Andrade, R. G. M., Pfeil,
M. S., & Filho, R. D. T. (2017). Rheological and mechanical
behavior of high strength steel fiber-river gravel self
compacting concrete. Construction and Building
Materials, 150, 606-618. https://doi.org/10.1016/j.conbuildmat.2017.06.030
[6]. Das, S. K., & Samui, P. (2008). Prediction of liquefaction
potential based on CPT data: A relevance vector
machine approach. In Proceedings of the 12th
International Conference of International Association for
Computer Methods and Advances in Geomechanics
(IACMAG) (pp. 2856- 2861).
[7]. Dawei, H., Ian, C., & Weiping, K. (2012). Flow
modelling using relevance vector machine (RVM). In
Proceedings of the 5th International Conference on
Hydroinformatics, Cardiff, UK.
[8]. Dinakar, P., Babu, K. G., & Santhanam, M. (2008).
Mechanical properties of high-volume fly ash selfcompacting
concrete mixtures, Structural Concrete,
9(2), 109-116.
[9]. El-Dieb, A. S. (2009). Mechanical, durability and
microstructural characteristics of ultra-high-strength selfcompacting
concrete incorporating steel fibers.
Materials & Design, 30(10), 4286-4292. https://doi.org/10.1016/j.matdes.2009.04.024
[10]. El-Dieb, A. S., & Taha, M. R. (2012). Flow
characteristics and acceptance criteria of fiberreinforced
self-compacted concrete (FR-SCC).
Construction and Building materials, 27(1), 585-596.
https://doi.org/10.1016/j.conbuildmat.2011.07.004
[11]. European Project Group. (2005). The European
Guidelines for Self-Compacting Concrete: Specification,
Production and Use. The European Project Group.
Retrieved from https://www.theconcreteinitiative.eu/images/ECP_Documents/EuropeanGuidelinesSelfComp actingConcrete.pdf
[12]. Felekoğlu, B., Türkel, S., & Baradan, B. (2007). Effect
of water/cement ratio on the fresh and hardened
properties of self-compacting concrete. Building and
Environment, 42(4), 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012
[13]. Friedman, J.H. (1991). Multivariate adaptive
regression splines. The Annals of Statistics, 19(1), 1-67.
https://doi.org/10.1214/aos/1176347963
[14]. Kamal, M. M., Safan, M. A., Etman, Z. A., & Kasem, B.
M. (2014). Mechanical properties of self-compacted
fiber concrete mixes. HBRC Journal, 10(1), 25-34. https://doi.org/10.1016/j.hbrcj.2013.05.012
[15]. Kaur, J., & Kaur, K. (2017). A fuzzy approach for an IoTbased
automated employee performance appraisal,
CMC: Computers, Materials & Continua, 53(1), 23-36.
https://doi.org/10.3970/cmc.2017.053.024
[16]. Khaloo, A., Raisi, E. M., Hosseini, P., & Tahsiri, H.
(2014). Mechanical performance of self-compacting
concrete reinforced with steel fibers. Construction and
Building Materials, 51, 179-186. https://doi.org/10.1016/j.conbuildmat.2013.10.054
[17]. Li, J., & Yang, E. H. (2018). Probabilistic-based
assessment for tensile strain-hardening potential of fiberreinforced
cementitious composites. Cement and
Concrete Composites, 91, 108-117. https://doi.org/10.1016/j.cemconcomp.2018.05.003
[18]. Liu, K., & Xu, Z. (2011). Traffic flow prediction of
highway based on wavelet relevance vector machine.
Journal of Information & Computational Science. 8(9),
1641–1647.
[19]. Lokuge, W., Wilson, A., Gunasekara, C., Law, D. W., &
Setunge, S. (2018). Design of fly ash geopolymer
concrete mix proportions using multivariate adaptive
regression spline model. Construction and Building
Materials, 166, 472-481. https://doi.org/10.1016/j.conbuildmat.2018.01.175
[20]. Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M.
M., Baharom, S., & Azimi, M. (2016). Strength prediction of
rotary brace damper using MLR and MARS. Structural
Engineering and Mechanics, 60(3), 471-488.
[21]. Okamura, H. M, & Ouchi, M. (2003). Selfcompacting
concrete. Journal of Advances Concrete
Technology, 1, 5-15. https://doi.org/10.3151/jact.1.5
[22]. Okamura, H., & Ozawa, K. (1995). Mix design for selfcompacting
concrete. Concrete Library of Japanese
Society of Civil Engineers, 25, 107-120.
[23]. Parra, C., Valcuende, M., & Gómez, F. (2011).
Splitting tensile strength and modulus of elasticity of selfcompacting
concrete. Construction and Building
Materials, 25(1), 201-207. https://doi.org/10.1016/j.conbuildmat.2010.06.037
[24]. Seshaiah, B., Rao, P. S., & Rao, P. S. (2021). Effect of
mineral admixtures on the properties of steel fibre
reinforced SCC proportioned using plastic viscosity and
development of regression & ANN model. Computers
and Concrete, 27(6), 523-535. https://doi.org/10.12989/cac.2021.27.6.523
[25]. Shah, V. S., Shah, H. R., Samui, P., Murthy, A. R.,
Merono, P., Gomez, F., & Liu, B. (2014). Prediction of
fracture parameters of high strength and ultra-high
strength concrete beams using minimax probability
machine regression and extreme learning machine.
Computers, Materials and Continua, 44(2), 73-84. https://doi.org/10.3970/cmc.2014.044.073
[26]. Soutsos, M. N., Le, T. T., & Lampropoulos, A. P. (2012).
Flexural performance of fibre reinforced concrete made
with steel and synthetic fibres. Construction and Building
Materials, 36, 704-710. https://doi.org/10.1016/j.conbuildmat.2012.06.042
[27]. Tipping, M.E. (1999). The relevance vector machine.
Advances in Neural Information Processing Systems, 12,
652-658.
[28]. Tipping, M. E. (2001). Sparse bayesian learning and
the relevance vector machine. Journal of Machine
Learning Research, 1, 211-244.
[29]. Wang, X., Ye, M., & Duanmu, C. J. (2009).
Classification of data from electronic nose using
relevance vector machines. Sensors and Actuators B:
Chemical, 140(1), 143-148. https://doi.org/10.1016/j.snb.2009.04.030
[30]. Wei, L., Yang, Y., Nishikawa, R. M., Wernick, M. N., & Edwards, A. (2005). Relevance vector machine for
automatic detection of clustered microcalcifications.
IEEE Transactions on Medical Imaging, 24(10), 1278-1285. https://doi.org/10.1109/TMI.2005.855435
[31]. Widodo, A., Kim, E. Y., Son, J. D., Yang, B. S., Tan, A.
C., Gu, D. S., Choi, B. K., & Mathew, J. (2009). Fault
diagnosis of low speed bearing based on relevance
vector machine and support vector machine. Expert
Systems with Applications, 36(3), 7252-7261. https://doi.org/10.1016/j.eswa.2008.09.033
[32]. Yehia, S., Douba, A., Abdullahi, O., & Farrag, S.
(2016). Mechanical and durability evaluation of fiberreinforced
self-compacting concrete. Construction and
Building Materials, 121, 120-133. https://doi.org/10.1016/j.conbuildmat.2016.05.127
[33]. Yuvaraj, P., Murthy, A. R., Iyer, N. R., Samui, P., & Sekar,
S. K. (2013a). Multivariate adaptive regression splines
model to predict fracture characteristics of high strength
and ultra high strength concrete beams. CMC: Computers, Materials & Continua, 36(1), 73-97.
[34]. Yuvaraj, P., Murthy, A. R., Iyer, N. R., Samui, P., & Sekar,
S. K. (2014a). Prediction of fracture characteristics of high
strength and ultra high strength concrete beams based
on relevance vector machine. International Journal of
Damage Mechanics, 23(7), 979-1004. https://doi.org/10.1177/1056789514520796
[35]. Yuvaraj, P., Murthy, A. R., Iyer, N. R., Sekar, S. K., &
Samui, P. (2013b). Support vector regression based
models to predict fracture characteristics of high strength
and ultra high strength concrete beams. Engineering
Fracture Mechanics, 98, 29-43. https://doi.org/10.1016/j.engfracmech.2012.11.014
[36]. Yuvaraj, P., Murthy, A. R., Iyer, N. R., Sekar, S. K., &
Samui, P. (2014b). ANN model to predict fracture
characteristics of high strength and ultra high strength
concrete beams. CMC-Computers Materials &
Continua, 41(3), 193-213.