References
[1]. Anderson, J. (2011). EBOOK: Fundamentals of
Aerodynamics (SI units). McGraw Hill.
[2]. Baliunas, S. L., Horne, J. H., Porter, A., Duncan, D. K.,
Frazer, J., Lanning, H., ... & Woodard, L. (1985). Timeseries
measurements of chromospheric CA II H and K
emission in cool stars and the search for differential
rotation. The Astrophysical Journal, 294, 310-325.
[3]. Basu, B. C., & Hancock, G. J. (1978). The unsteady
motion of a two-dimensional aerofoil in incompressible
inviscid flow. Journal of Fluid Mechanics, 87(1), 159-178.
https://doi.org/10.1017/S0022112078002980
[4]. Bauer, S. (1998, January). An aerodynamic
assessment of micro-drag generators (MDGs). In 16th AIAA
Applied Aerodynamics Conference (p. 2621).
https://doi.org/10.2514/6.1998-2621
[5]. Bisplinghoff, R. L., Ashley, H., & Halfman, R. L. (1996).
Aeroelasticity. Dover Publications.
[6]. Chen, P. C., Sarhaddi, D., Jha, R., Liu, D. D., Griffin, K.,
& Yurkovich, R. (2000). Variable stiffness spar approach for
aircraft maneuver enhancement using ASTROS. Journal of
Aircraft, 37(5), 865-871. https://doi.org/10.2514/2.2682
[7]. Deep Neural Networks. (2020). Retrieved from
https://www.kdnuggets.com/2020/02/deep-neuralnetworks.html
[8]. Dhawan, S. (1991). Bird flight. Sadhana, 16(4), 275-352.
[9]. Dowell, E. H., Scanlan, R. H., Sisto, F., Curtiss Jr, H. C., &
Saunders, H. (1981). A modern course in aeroelasticity. Journal of Mechanical Design, 103(2), 261. https://doi.org/10.1115/1.3254896
[10]. Garg, D. P., Zikry, M. A., & Anderson, G. L. (2001).
Current and potential future research activities in
adaptive structures: an ARO perspective. Smart Materials
and Structures, 10(4), 610.
[11]. Gern, F., Inman, D., & Kapania, R. (2001). Structural
and aeroelastic modeling of general planform UCAV
wings with morphing airfoils. In 19th AIAA Applied
Aerodynamics Conference (p. 1369). https://doi.org/10.2514/6.2001-1369
[12]. Haykin, S. (1999). Neural networks: A guided tour. Soft
Computing and Intelligent Systems: Theory and
Applications, 71.
[13]. Hsu, C. S. (1974). On approximating a general linear
periodic system. Journal of Mathematical Analysis and
Applications, 45(1), 234-251.
[14]. Inman, D. J., Gern, F. H., Robertshaw, H. H., Kapania,
R. K., Pettit, G., Natarajan, A., & Sulaeman, E. (2001,
June). Comments on prospects of fully adaptive aircraft
wings. In Smart Structures and Materials 2001: Industrial
and Commercial Applications of Smart Structures
Technologies (Vol. 4332, pp. 1-9). SPIE. https://doi.org/10.1117/12.429643
[15]. Jacob, J. D. (1998, November). On the fluid
dynamics of adaptive airfoils. In ASME International
Mechanical Engineering Congress and Exposition (Vol.
16035, pp. 167-176). American Society of Mechanical
Engineers. https://doi.org/10.1115/IMECE1998-0950
[16]. Kral, L. D. (1998). Recent experience with different
turbulence models applied to the calculation of flow over
aircraft components. Progress in Aerospace Sciences,
34(7-8), 481-541. https://doi.org/10.1016/S0376-0421(98)00009-8
[17]. Malik, F. (2019). Neural Networks Bias and Weights.
Retrieved from https://medium.com/fintechexplained/
neural-networks-bias-and-weights-10b53e6285da
[18]. Natarajan, A. (2002). Aeroelasticity of Morphing
Wings Using Neural Networks, (Doctoral dissertation,
Virginia Polytechnic Institute and State University).
[19]. Nayfeh, A. H., & Balachandran, B. (2008). Applied
Nonlinear Dynamics: Analytical, Computational, and
Experimental Methods. John Wiley & Sons.
[20]. Patra, T. K., Zhang, F., Schulman, D. S., Chan, H.,
Cherukara, M. J., Terrones, M., ... & Sankaranarayanan,
S. K. (2018). Defect dynamics in 2-D MoS2 probed by
using machine learning, atomistic simulations, and highresolution
microscopy. ACS Nano, 12(8), 8006-8016.
https://doi.org/10.1021/acsnano.8b02844
[21]. Pinkerton, J. L. (1997). A Feasibility Study to Control
Airfoil Shape using Thunder (Vol. 4767). NASA, Langley
Research Center.
[22]. Pletcher, R. H., Tannehill, J. C., & Anderson, D.
(2012). Computational Fluid Mechanics and Heat
Transfer. CRC press.
[23]. Poling, D. R., & Telionis, D. P. (1986). The response of
airfoils to periodic disturbances-The unsteady Kutta
condition. AIAA Journal, 24(2), 193-199. https://doi.org/10.2514/3.9244
[24]. Ramanaiah, K. V., & Sridhar, S. I. R. I. P. U. R. A. P. U.
(2014). Hardware implementation of artificial neural networks. i-manager's Journal on Embedded Systems,
3(4), 31-34. https://doi.org/10.26634/jes.3.4.3514
[25]. Raney, D., Montgomery, R., Green, L., & Park, M.
(2000, April). Flight control using distributed shape
change effector arrays. In 41st Structures, Structural
Dynamics, and Materials Conference and Exhibit (p. 1560). https://doi.org/10.2514/6.2000-1560
[26]. Smith, M., Patil, M., & Hodges, D. (2001). CFD-based
analysis of nonlinear aeroelastic behavior of high-aspect
ratio wings. In 19th AIAA Applied Aerodynamics
Conference (p. 1582). https://doi.org/10.2514/6.2001-1582
[27]. Toqeer, R. S., & Bayindir, N. S. (2003). Speed
estimation of an induction motor using Elman neural
network. Neurocomputing, 55(3-4), 727-730.
https://doi.org/10.1016/S0925-2312(03)00384-9
[28]. Torra, V., Isalgue, A., & Lovey, F. (2001). Guaranteed
Behavior in Shape Memory Alloys. Short-and long-time
effects related to temperature and phase coexistence.
Journal of Thermal Analysis and Calorimetry, 66(1), 7-16.
https://doi.org/10.1023/a:1012406825770