References
[1]. Ali, M. S., Kamarudin, S. K., Masdar, M. S., &
Mohamed, A. (2014). An overview of power electronics
applications in fuel cell systems: DC and AC converters.
The Scientific World Journal, 2014. https://doi.org/10.1155/2014/103709
[2]. Azzollini, I. A., Felice, V. D., Fraboni, F., Cavallucci, L.,
Breschi, M., Rosa, A. D., & Zini, G. (2018). Lead-acid
battery modeling over full state of charge and discharge
range. IEEE Transactions on Power Systems, 33(6),
6422–6429. https://doi.org/10.1109/TPWRS.2018.2850049
[3]. Bidram, A., & Davoudi, A. (2012). Hierarchical
structure of microgrids control system. IEEE Transactions
on Smart Grid, 3(4), 1963–1976. https://doi.org/10.1109/TSG.2012.2197425
[4]. Bradbury, K. (2010). Energy Storage Technology
Review. A Brief Introduction to Batteries, 1–34.
[5]. Camacho, O. M. F., & Mihet-Popa, L. (2016). Fast
charging and smart charging tests for electric vehicles
batteries using renewable energy. Oil & Gas Science and
Technology–Revue d'IFP Energies nouvelles, 71(1), 13.
[6]. Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2020).
Microgrids and active distribution networks. In Microgrids
and Active Distribution Networks. https://doi.org/10.1049/pbrn006e
[7]. Dragicevic, T., Guerrero, J. M., Vasquez, J. C., &
Skrlec, D. (2014). Supervisory control of an adaptive-droop regulated DC microgrid with battery management
capability. IEEE Transactions on Power Electronics, 29(2),
695–706. https://doi.org/10.1109/TPEL.2013.2257857
[8]. Faisal, M., Hannan, M. A., Ker, P. J., Hussain, A.,
Mansor, M. B., & Blaabjerg, F. (2018). Review of energy
storage system technologies in microgrid applications:
Issues and challenges. IEEE Access, 6, 35143–35164.
https://doi.org/10.1109/ACCESS.2018.2841407
[9]. Gunasekaran, M., Ismail, H. M., Chokkalingam, B.,
Mihet-Popa, L., & Padmanaban, S. (2018). Energy
management strategy for rural communities' DC micro
grid power system structure with maximum penetration of
renewable energy sources. Applied Sciences, 8(4), 585.
https://doi.org/10.3390/app8040585
[10]. Jadav, K. A., Karkar, H. M., & Trivedi, I. N. (2017). A
Review of microgrid architectures and control strategy.
Journal of The Institution of Engineers (India): Series B,
98(6), 591-598. https://doi.org/10.1007/s40031-017-0287-3
[11]. Lasseter, R. H., & Paigi, P. (2004). Microgrid: A
conceptual solution. In 2004 IEEE 35th Annual Power
Electronics Specialists Conference (IEEE Cat.
No.04CH37551), 6, 4285-4290. https://doi.org/10.1109/PESC.2004.1354758
[12]. Lu, X., Sun, K., Guerrero, J. M., Vasquez, J. C.,
Huang, L., & Teodorescu, R. (2012). SoC-based droop
method for distributed energy storage in DC microgrid
applications. In 2012 IEEE International Symposium on
Industrial Electronics, 1640-1645. https://doi.org/10.1109/ISIE.2012.6237336
[13]. Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E.
(2016). Off-grid systems for rural electrification in
developing countries: Definitions, classification and a
comprehensive literature review. Renewable and
Sustai n able En ergy Reviews, 58, 1621–1646.
https://doi.org/10.1016/j.rser.2015.12.338
[14]. Meng, L., Shafiee, Q., Trecate, G. F., Karimi, H.,
Fulwani, D., Lu, X., & Guerrero, J. M. (2017). Review on
Control of DC Microgrids and Multiple Microgrid Clusters.
IEEE Journal of Emerging and Selected Topics in Power
Electronics, 5(3), 928–948. https://doi.org/10.1109/ JESTPE.2017.2690219
[15]. Morstyn, T., Hredzak, B., & Agelidis, V. G. (2018).
Control strategies for microgrids with distributed energy
storage systems: An overview. IEEE Transactions on Smart
Grid, 9(4), 3652–3666. https://doi.org/10.1109/TSG.2016.2637958
[16]. Muthuvel, P., Daniel, S. A., & Paul, S. K. (2017). Sizing
of PV array in a DC nano-grid for isolated households after
alteration in time of consumption. Engineering Science
and Technology, an International Journal, 20(6), 1632-1641. https://doi.org/10.1016/j.jestch.2017.12.006
[17]. Nadeem, F., Hussain, S. S., Tiwari, P. K., Goswami, A.
K., & Ustun, T. S. (2018). Comparative review of energy
storage systems, their roles, and impacts on future power
systems. IEEE access, 7, 4555-4585. https://doi.org/10.1109/ACCESS.2018.2888497
[18]. Naeinian, B. (2016). Seamless operation of a
microgrid using BESS. Retrieved from https://repository.
tudelft.nl/islandora/object/uuid:5655df88-9b44-4fca-8992-94951105524e
[19]. Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H.,
Cañizares, C. A., Iravani, R., Kazerani, M., Hatziargyriou,
N. D. (2014). Trends in microgrid control. IEEE Transactions
on Smart Grid, 5(4), 1905–1919. https://doi.org/10.1109/TSG.2013.2295514
[20]. Parhizi, S., Lotfi, H., Khodaei, A., & Bahramirad, S.
(2015). State of the art in research on microgrids: A review.
IEEE Access, 3, 890–925. https://doi.org/10.1109/ACCESS.2015.2443119
[21]. Rajesh, R., & Mabel, M. C. (2015). A comprehensive
review of photovoltaic systems. Renewable and
Sustainable Energy Reviews, 51, 231-248. https://doi.org/10.1016/j.rser.2015.06.006
[22]. Sahoo, S. K., Sinha, A. K., & Kishore, N. K. (2018).
Control techniques in AC, DC, and hybrid AC–DC
microgrid: A review. IEEE Journal of Emerging and
Selected Topics in Power Electronics, 6(2), 738-759.
https://doi.org/10.1109/JESTPE.2017.2786588
[23]. Shalini, R., Nagashree, A. N., & Murthy, B. A. (2016).
Uninterruptable power supply design using Float Cum
Boost technology. In 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES),
1-6. https://doi.org/10.1109/PEDES.2016.7914230
[24]. Ustun, T. S., Ozansoy, C., & Zayegh, A. (2011). Recent
developments in microgrids and example cases around
the world—A review. Renewable and Sustainable Energy
Reviews, 15(8), 4030-4041. https://doi.org/10.1016/j.rser.2011.07.033
[25]. Wang, C., Yu, Y., Niu, J., Liu, Y., Bridges, D., Liu, X., &
Hu, A. (2019). Recent progress of metal–air batteries—a
Mini review. Applied Sciences, 9(14), 2787 https://doi.org/10.3390/app9142787
[26]. Yu, S. Y., Kim, H. J., Kim, J. H., & Han, B. M. (2016). SoCbased
output voltage control for BESS with a lithium-ion
battery in a stand-alone DC microgrid. Energies, 9(11),
924. https://doi.org/10.3390/en9110924
[27]. Zhou, N., Liu, N., Zhang, J., & Lei, J. (2016). Multiobjective
optimal sizing for battery storage of PV-based
microgrid with demand response. Energies, 9(8), 591.
https://doi.org/10.3390/en9080591