Effect of SiC Coated GNP on Microstructure and Mechanical Properties of Pressureless Sintered SS316L Composites

Kalyanamanohar Veeramallu*, A. Gopalakrishna**
*-** Department of Mechanical Engineering, UCEK (A), JNTUK Kakinada, Andhra Pradesh, India.
Periodicity:May - July'2022
DOI : https://doi.org/10.26634/jme.12.3.18589

Abstract

In this research, an attempt was made to reinforce Silicon Carbide (SiC) Coated Graphene Nano Platelets (SGNP) in SS316L composites through a pressureless sintering technique. By reinforcing xSGNP (x: 0.25, 0.5, and 0.75 wt %) into the SS316L matrix material it would be consolidated and sintered in a vacuum. Further microstructural studies and mechanical tests will be carried out. The investigation reveals the effectiveness of SGNP reinforcement in improving the mechanical properties of SS316L composites. The microstructural and elemental composition analysis of composites was carried out by an optical microscope, Scanning Electron Microscope (SEM) and Energy Dispersive XRay Spectroscopy (EDS). The mechanical properties of SS316L/xSGNP composites were evaluated by using Vickers micro-hardness tester and Pin-on disc wear apparatus. The fine grain structure was observed with the reinforcement of SS316L-SGNP. The hardness of composites drastically increased by 110% compared to monolithic SS316L when increasing the weight percentage of SGNP to 0.5Wt %. The wear rate of 0.5wt % SGNP dropped to 55% compared with SS316L

Keywords

SS316L, Silicon Carbide Coated Graphene Nano Platelets, Pressureless Sintering, Scanning Electron Microscope, Density, Wear Rate.

How to Cite this Article?

Veeramallu, K., and Gopalakrishna, A. (2022). Effect of SIC Coated GNP on Microstructure and Mechanical Properties of Pressureless Sintered SS316L Composites. i-manager’s Journal on Mechanical Engineering, 12(3), 1-12. https://doi.org/10.26634/jme.12.3.18589

References

[1]. Akbarpour, M. R., Mirabad, H. M., Azar, M. K., Kakaei, K., & Kim, H. S. (2020). Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process. Materials Science and Engineering: A, 786, 139395. https://doi.org/10.1016/j.msea.2020.139395
[2]. Balaji, S., Vijay, P., & Upadhyaya, A. (2007). Effect of sintering temperature on the electrochemical, hardness and tribological properties of aluminide-reinforced austenitic stainless steel. Scripta Materialia, 56(12), 1063-1066. https://doi.org/10.1016/j.scriptamat.2007.02.033
[3]. Bollina, R., & German, R. M. (2004, October). Supersolidus sintering of boron doped stainless steel powder compacts. In Conference Proceedings: Euro PM, 341–348.
[4]. Boonruang, C., & Sanumang, W. (2021). Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-91958-x
[5]. Kishore Kumar, P., Vijaya Sai, N., & Gopala Krishna, A. (2018). Influence of sintering conditions on microstructure and mechanical properties of alloy 218 steels by powder metallurgy route. Arabian Journal for Science and Engineering, 43(9), 4659–4674. https://doi.org/10.1007/s13369-017-3015-z
[6]. Kuforiji, C., & Nganbe, M. (2019). Powder metallurgy fabrication, characterisation and wear assessment of SS316L-Al2O3 composites. Tribology International, 130, 339–351. https://doi.org/10.1016/j.triboint.2018.10.002
[7]. Kurgan, N. (2013). Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel. Materials and Design, 52, 995–998. https://doi.org/10.1016/j.matdes.2013.06.035
[8]. Liu, G., Zhao, N., Shi, C., Liu, E., He, F., Ma, L., Li, Q., Li, J., & He, C. (2017). In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. Materials Science and Engineering A, 699, 185–193. https://doi.org/10.1016/j.msea.2017.05.084
[9]. Mallikarjuna, H. M., Ramesh, C. S., Koppad, P. G., Keshavamurthy, R., & Kashyap, K. T. (2016). Effect of carbon nanotube and silicon carbide on microstructure and dry sliding wear behavior of copper hybrid nanocomposites. Transactions of Nonferrous Metals Society of China (English Edition), 26(12), 3170–3182. https://doi.org/10.1016/S1003-6326(16)64449-7
[10]. Mallikarjuna, H. M., Ramesh, C. S., Koppad, P. G., Keshavamurthy, R., & Sethuram, D. (2017). Nanoindentation and wear behaviour of copper based hybrid composites reinforced with SiC and MWCNTs synthesized by spark plasma sintering. Vacuum, 145, 320–333. https://doi.org/10.1016/j.vacuum.2017.09.016
[11]. Mandal, A., Tiwari, J. K., Sathish, N., & Srivastava, A. K. (2020). Microstructural and mechanical properties evaluation of graphene reinforced stainless steel composite produced via selective laser melting. Materials Science and Engineering A, 774, 138936. https://doi.org/10.1016/j.msea.2020.138936
[12]. Morisada, Y., Miyamoto, Y., Takaura, Y., Hirota, K., & Tamari, N. (2007). Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. International Journal of Refractory Metals and Hard Materials, 25(4), 322–327. https://doi.org/10.1016/j.ijrmhm.2006.08.005
[13]. Ouyang, W., Xu, Z., Jia, S., Zhang, M., Ye, Y., Jiao, J., ... & Zhang, W. (2019). Multilayer-graphene reinforced 316L matrix composites preparation by laser deposited additive manufacturing: microstructure and mechanical property analysis. Materials Research Express, 6(9), 096557.
[14]. Padmavathi, C., Joshi, G., Upadhyaya, A., & Agrawal, D. (2008). Effect of sintering temperature, heating mode and graphite addition on the corrosion response of austenitic and ferritic stainless steels. Transactions of the Indian Institute of Metals, 61(2–3), 239–243. https://doi.org/10.1007/s12666-008-0022-5
[15]. Pandya, S., Ramakrishna, K. S., Annamalai, A. R., & Upadhyaya, A. (2012). Effect of sintering temperature on the mechanical and electrochemical properties of austenitic stainless steel. Materials Science and Engineering: A, 556, 271-277. https://doi.org/10.1016/j.msea.2012.06.087
[16]. Patankar, S. N., & Tan, M. J. (2000). Role of reinforcement in sintering of SiC/316L stainless steel composite. Powder Metallurgy, 43(4), 350–352. https://doi.org/10.1179/003258900666078
[17]. Radhamani, A. V., Lau, H. C., Kamaraj, M., & Ramakrishna, S. (2020). Structural, mechanical and tribological investigations of CNT-316 stainless steel nanocomposites processed via spark plasma sintering. Tribology International, 152(July), 106524. https://doi.org/10.1016/j.triboint.2020.106524
[18]. Ren, W., Li, A., Zhang, W., Yang, Y., Zhou, S., Shi, L., ... & Wang, X. (2020). A facile and cost-effective approach to fabricate in-situ synthesized graphene nanosheet reinforced 316L stainless steel. JOM, 72(12), 4514-4521. https://doi.org/10.1007/s11837-020-04440-w
[19]. Serafini, F. L., Peruzzo, M., Krindges, I., Ordoñez, M. F. C., Rodrigues, D., Souza, R. M., & Farias, M. C. M. (2019). Microstructure and mechanical behavior of 316L liquid phase sintered stainless steel with boron addition. Materials Characterization, 152, 253-264. https://doi.org/10.1016/j.matchar.2019.04.009
[20]. Song, N., Liu, H., Yuan, Y. T., & Fang, J. Z. (2014). Fabrication and characterization of SiC-coated multiwalled carbon nanotubes reinforced reaction bonded SiC composite. Advanced Materials Research, 936, 176–180. https://doi.org/10.4028/www.scientific.net/AMR.936.176
[21]. Szewczyk-Nykiel, A., & Bogucki, R. (2018). Sinter- Bonding of AISI 316L and 17-4 PH Stainless Steels. Journal of Materials Engineering and Performance, 27(10), 5271–5279. https://doi.org/10.1007/s11665-018-3590-5
[22]. Wang, W. F., & Su, Y. L. (1986). Liquid phase sintering of austenitic stainless steel powders with silicon additions. Powder Metallurgy, 29(4), 269–275. https://doi.org/10.1179/pom.1986.29.4.269
[23]. Zou, Y., Tan, C., Qiu, Z., Ma, W., Kuang, M., & Zeng, D. (2021). Additively manufactured SiC-reinforced stainless steel with excellent strength and wear resistance. Additive Manufacturing, 41, 101971. https://doi.org/10.1016/j.addma.2021.101971
[24]. Skałon, M., Buzolin, R., Kazior, J., Sommitsch, C., & Hebda, M. (2019). Improving the dimensional stability and mechanical properties of AISI 316L+ B sinters by Si3N4 addition. Materials, 12(11), 1798. https://doi.org/10.3390/ma12111798
[25]. Wu, C. L., Zhang, S., Zhang, C. H., Zhang, J. B., Liu, Y., & Chen, J. (2019). Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition. Optics & Laser Technology, 115, 134-139. https://doi.org/10.1016/j.optlastec.2019.02.029
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.