References
[1]. Akbarpour, M. R., Mirabad, H. M., Azar, M. K., Kakaei,
K., & Kim, H. S. (2020). Synergistic role of carbon nanotube
and SiCn reinforcements on mechanical properties and
corrosion behavior of Cu-based nanocomposite
developed by flake powder metallurgy and spark plasma
sintering process. Materials Science and Engineering: A,
786, 139395. https://doi.org/10.1016/j.msea.2020.139395
[2]. Balaji, S., Vijay, P., & Upadhyaya, A. (2007). Effect of
sintering temperature on the electrochemical, hardness
and tribological properties of aluminide-reinforced
austenitic stainless steel. Scripta Materialia, 56(12), 1063-1066. https://doi.org/10.1016/j.scriptamat.2007.02.033
[3]. Bollina, R., & German, R. M. (2004, October).
Supersolidus sintering of boron doped stainless steel
powder compacts. In Conference Proceedings: Euro
PM, 341–348.
[4]. Boonruang, C., & Sanumang, W. (2021). Effect of
nano-grain carbide formation on electrochemical
behavior of 316L stainless steel. Scientific Reports, 11(1),
1–11. https://doi.org/10.1038/s41598-021-91958-x
[5]. Kishore Kumar, P., Vijaya Sai, N., & Gopala Krishna, A. (2018). Influence of sintering conditions on microstructure
and mechanical properties of alloy 218 steels by powder
metallurgy route. Arabian Journal for Science and
Engineering, 43(9), 4659–4674. https://doi.org/10.1007/s13369-017-3015-z
[6]. Kuforiji, C., & Nganbe, M. (2019). Powder metallurgy
fabrication, characterisation and wear assessment of
SS316L-Al2O3 composites. Tribology International, 130,
339–351. https://doi.org/10.1016/j.triboint.2018.10.002
[7]. Kurgan, N. (2013). Effects of sintering atmosphere on
microstructure and mechanical property of sintered
powder metallurgy 316L stainless steel. Materials and
Design, 52, 995–998. https://doi.org/10.1016/j.matdes.2013.06.035
[8]. Liu, G., Zhao, N., Shi, C., Liu, E., He, F., Ma, L., Li, Q., Li,
J., & He, C. (2017). In-situ synthesis of graphene
decorated with nickel nanoparticles for fabricating
reinforced 6061Al matrix composites. Materials Science
and Engineering A, 699, 185–193. https://doi.org/10.1016/j.msea.2017.05.084
[9]. Mallikarjuna, H. M., Ramesh, C. S., Koppad, P. G.,
Keshavamurthy, R., & Kashyap, K. T. (2016). Effect of
carbon nanotube and silicon carbide on microstructure
and dry sliding wear behavior of copper hybrid
nanocomposites. Transactions of Nonferrous Metals
Society of China (English Edition), 26(12), 3170–3182.
https://doi.org/10.1016/S1003-6326(16)64449-7
[10]. Mallikarjuna, H. M., Ramesh, C. S., Koppad, P. G.,
Keshavamurthy, R., & Sethuram, D. (2017).
Nanoindentation and wear behaviour of copper based
hybrid composites reinforced with SiC and MWCNTs
synthesized by spark plasma sintering. Vacuum, 145,
320–333. https://doi.org/10.1016/j.vacuum.2017.09.016
[11]. Mandal, A., Tiwari, J. K., Sathish, N., & Srivastava, A.
K. (2020). Microstructural and mechanical properties
evaluation of graphene reinforced stainless steel
composite produced via selective laser melting.
Materials Science and Engineering A, 774, 138936.
https://doi.org/10.1016/j.msea.2020.138936
[12]. Morisada, Y., Miyamoto, Y., Takaura, Y., Hirota, K., &
Tamari, N. (2007). Mechanical properties of SiC composites incorporating SiC-coated multi-walled
carbon nanotubes. International Journal of Refractory
Metals and Hard Materials, 25(4), 322–327.
https://doi.org/10.1016/j.ijrmhm.2006.08.005
[13]. Ouyang, W., Xu, Z., Jia, S., Zhang, M., Ye, Y., Jiao, J.,
... & Zhang, W. (2019). Multilayer-graphene reinforced
316L matrix composites preparation by laser deposited
additive manufacturing: microstructure and mechanical
property analysis. Materials Research Express, 6(9),
096557.
[14]. Padmavathi, C., Joshi, G., Upadhyaya, A., &
Agrawal, D. (2008). Effect of sintering temperature,
heating mode and graphite addition on the corrosion
response of austenitic and ferritic stainless steels.
Transactions of the Indian Institute of Metals, 61(2–3),
239–243. https://doi.org/10.1007/s12666-008-0022-5
[15]. Pandya, S., Ramakrishna, K. S., Annamalai, A. R., &
Upadhyaya, A. (2012). Effect of sintering temperature on
the mechanical and electrochemical properties of
austenitic stainless steel. Materials Science and
Engineering: A, 556, 271-277. https://doi.org/10.1016/j.msea.2012.06.087
[16]. Patankar, S. N., & Tan, M. J. (2000). Role of
reinforcement in sintering of SiC/316L stainless steel
composite. Powder Metallurgy, 43(4), 350–352.
https://doi.org/10.1179/003258900666078
[17]. Radhamani, A. V., Lau, H. C., Kamaraj, M., &
Ramakrishna, S. (2020). Structural, mechanical and
tribological investigations of CNT-316 stainless steel
nanocomposites processed via spark plasma sintering.
Tribology International, 152(July), 106524. https://doi.org/10.1016/j.triboint.2020.106524
[18]. Ren, W., Li, A., Zhang, W., Yang, Y., Zhou, S., Shi, L., ...
& Wang, X. (2020). A facile and cost-effective approach
to fabricate in-situ synthesized graphene nanosheet
reinforced 316L stainless steel. JOM, 72(12), 4514-4521.
https://doi.org/10.1007/s11837-020-04440-w
[19]. Serafini, F. L., Peruzzo, M., Krindges, I., Ordoñez, M. F.
C., Rodrigues, D., Souza, R. M., & Farias, M. C. M. (2019).
Microstructure and mechanical behavior of 316L liquid
phase sintered stainless steel with boron addition.
Materials Characterization, 152, 253-264. https://doi.org/10.1016/j.matchar.2019.04.009
[20]. Song, N., Liu, H., Yuan, Y. T., & Fang, J. Z. (2014).
Fabrication and characterization of SiC-coated multiwalled
carbon nanotubes reinforced reaction bonded
SiC composite. Advanced Materials Research, 936,
176–180. https://doi.org/10.4028/www.scientific.net/AMR.936.176
[21]. Szewczyk-Nykiel, A., & Bogucki, R. (2018). Sinter-
Bonding of AISI 316L and 17-4 PH Stainless Steels. Journal
of Materials Engineering and Performance, 27(10),
5271–5279. https://doi.org/10.1007/s11665-018-3590-5
[22]. Wang, W. F., & Su, Y. L. (1986). Liquid phase sintering
of austenitic stainless steel powders with silicon additions.
Powder Metallurgy, 29(4), 269–275. https://doi.org/10.1179/pom.1986.29.4.269
[23]. Zou, Y., Tan, C., Qiu, Z., Ma, W., Kuang, M., & Zeng, D.
(2021). Additively manufactured SiC-reinforced stainless
steel with excellent strength and wear resistance. Additive
Manufacturing, 41, 101971. https://doi.org/10.1016/j.addma.2021.101971
[24]. Skałon, M., Buzolin, R., Kazior, J., Sommitsch, C., &
Hebda, M. (2019). Improving the dimensional stability
and mechanical properties of AISI 316L+ B sinters by
Si3N4 addition. Materials, 12(11), 1798. https://doi.org/10.3390/ma12111798
[25]. Wu, C. L., Zhang, S., Zhang, C. H., Zhang, J. B., Liu, Y.,
& Chen, J. (2019). Effects of SiC content on phase
evolution and corrosion behavior of SiC-reinforced 316L
stainless steel matrix composites by laser melting
deposition. Optics & Laser Technology, 115, 134-139.
https://doi.org/10.1016/j.optlastec.2019.02.029