References
[1]. Singh, G.K., Kazzaz, S.A., & Ahmed, S. (2004).
Vibration signal analysis using wavelet transform for
isolation and identification of electrical faults in induction
motor. Electric Power Systems Research, 68 (3), 119-136.
[2]. IAS Motor Reliability Working Group (1985). Report of
Large Motor Reliability Survey of Industrial and
commercial installations, part-1. IEEE Transactions on
Industry Applications, 21(4), 853-864.
[3]. IAS Motor Reliability Working Group (1985). Report of
large motor reliability survey of industrial and commercial
installation, part 2. IEEE Transactions on Industry
Applications, 21(4), 865-872.
[4]. Purushotham, V., Narayanan, S., & Prasad, S. A. N.
(2005). Multi-fault diagnosis of rolling bearing elements
using wavelet analysis and hidden Markov model based
fault recognition. NDT & E International, 38 (8), 654-664.
[5]. Tandon, N., & Choudhury. A. (2000). A review of
vibration and acoustic measurement methods for the
detection of defects in rolling element bearings. Tribology
International, 32 (1999), 469-480.
[6]. Braun, S., & Datner, B. (1977). Analysis of roller/ball
bearing vibrations. ASME paper, 77 (5), 1-8.
[7]. MacFadden, P. D. & Smith, J. D. (1984). Vibration
monitoring of rolling element bearing by the high
frequency resonance technique, a review. Tribol Int 17(1),
3–10
[8]. Chaturvedi, G. K. & Thomas, D. W. (1981). Bearing
fault detection using adaptive Noise Cancelling. ASME
paper, 81(7), 1-10.
[9]. Staszewski, W. J. (1998). Structural and mechanical
damage detection using wavelrts. The Shock and
Vibration Digest, 6, 457-72.
[10]. Mertins (1999). Signal analysis: wavelets, filter banks,
time frequency transforms and applications. John Wiley &
Sons Ltd.
[11]. Mallat, S. G. (2000). A theory for multi resolution
signal decomposition: the wavelet representation. IEEE
Transl. on pattern analysis and machine intelligence, 11(
7), 674-693.
[12]. Prabhakar, S., Mohanty, A. R., & Sekhar, A. S. (2002).
Application of discrete wavelet transforms for detection of ball bearings race faults. Tribology International, 35,
793–800.
[13]. Seker, S. & Ayaz, E. (2003). Feature extraction related
to bearing damage in electric motors by wavelet analysis.
Journal of the Franklin Institute, 340 (2), 125-134.
[14]. Wowk, V. (1991). Machinery Vibration, Measurement
and Analysis, McGraw-Hill, New York.
[15]. Choudhury, A. & Tandon, N. (2000). Application of
acoustic emission technique for the detection of defects
in rolling element bearings. Test, 33, 39-45.
[16]. Gaeid, K. S. & Ping, H. W. (2011). Wavelet fault
diagnosis and tolerant of induction motor: A review.
International Journal, 6 (3), 358-376.
[17]. Seker, S., Upadhyaya, B. R., Erbay, A. S., McClanhan,
J.P., & DaSilva, A.A. (1998). Rotating machinery
monitoring and degradation trending using wavelet
transform. Proc. MARCON, 23(1), 01-11.
[18]. Wang, D., Miao, Q., Fan, X., Huang, H.Z. (2010).
Rolling element bearing fault detection using an
improved combination of Hilbert and wavelet transforms.
Journal of Mechanical Science and Technology, 23 (12),
3292-3301
[19]. Al-raheem, K. F., & Abdul-karem, W. (2010). Rolling
bearing fault diagnostics using artificial neural networks
based on Laplace wavelet analysis. Science And
Technology, 2(6), 278-290.