References
[1]. Azizivahed, A., Narimani, H., Fathi, M., Naderi, E.,
Safarpour, H. R., & Narimani, M. R. (2018). Multi-objective
dynamic distribution feeder reconfiguration in
automated distribution systems. Energy, 147, 896-914.
https://doi.org/10.1016/j.energy.2018.01.111
[2]. Hooshmand, E., & Rabiee, A. (2019). Energy
management in distribution systems, considering the
impact of reconfiguration, RESs, ESSs and DR: A trade-off
between cost and reliability. Renewable Energy, 139,
346-358. https://doi.org/10.1016/j.renene.2019.02.101
[3]. Imran, A. M., Kowsalya, M., & Kothari, D. P. (2014). A
novel integration technique for optimal network
reconfiguration and distributed generation placement in
power distribution networks. International Journal of
Electrical Power & Energy Systems, 63, 461-472. https://doi.org/10.1016/j.ijepes.2014.06.011
[4]. Li, Z., Wang, S., Zhou, Y., Liu, W., & Zheng, X. (2020).
Optimal distribution systems operation in the presence of
wind power by coordinating network reconfiguration and
demand response. International Journal of Electrical Power & Energy Systems, 119, 105911. https://doi.org/10.1016/j.ijepes.2020.105911
[5]. Mahboubi-Moghaddam, E., Narimani, M. R.,
Khooban, M. H., & Azizivahed, A. (2016). Multi-objective
distribution feeder reconfiguration to improve transient
stability, and minimize power loss and operation cost
using an enhanced evolutionary algorithm at the
presence of distributed generations. International Journal
of Electrical Power & Energy Systems, 76, 35-43. https://doi.org/10.1016/j.ijepes.2015.09.007
[6]. Oh, S. H., Yoon, Y. T., & Kim, S. W. (2020). Online
reconfiguration scheme of self-sufficient distribution
network based on a reinforcement learning approach.
Applied Energy, 280, 115900. https://doi.org/10.1016/j.apenergy.2020.115900
[7]. Postigo, F., Mateo, C., Gómez, T., de Cuadra, F.,
Dueñas, P., Elgindy, T., ... & Krishnan, V. (2020). Phaseselection
algorithms to minimize cost and imbalance in
US synthetic distribution systems. International Journal of
Electrical Power & Energy Systems, 120, 106042. https://doi.org/10.1016/j.ijepes.2020.106042
[8]. Quintero-Duran, M., Candelo, J. E., & Soto-Ortiz, J.
(2019). A modified backward/forward sweep-based
method for reconfiguration of unbalanced distribution
networks. International Journal of Electrical & Computer
Engineering (2088-8708), 9(1), 85-101. https://doi.org/10.11591/ijece.v9i1
[9]. Raut, U., & Mishra, S. (2020). An improved sine–cosine
algorithm for simultaneous network reconfiguration and
DG allocation in power distribution systems. Applied Soft
Computing, 92, 106293. https://doi.org/10.1016/j.asoc.2020.106293
[10]. Santos, S. F., Fitiwi, D. Z., Cruz, M. R., Cabrita, C. M., & Catalão, J. P. (2017). Impacts of optimal energy storage
deployment and network reconfiguration on renewable
integration level in distribution systems. Applied Energy,
185, 44-55. https://doi.org/10.1016/j.apenergy.2016.10.053
[11]. Shareef, H., Ibrahim, A. A., Salman, N., Mohamed,
A., & Ai, W. L. (2014). Power quality and reliability
enhancement in distribution systems via optimum
network reconfiguration by using quantum firefly
algorithm. International Journal of Electrical Power &
Energy Systems, 58, 160-169. https://doi.org/10.1016/j.ijepes.2014.01.013
[12]. Sultana, S., & Roy, P. K. (2016). Oppositional krill herd
algorithm for optimal location of capacitor with
reconfiguration in radial distribution system. International
Journal of Electrical Power & Energy Systems, 74, 78-90.
https://doi.org/10.1016/j.ijepes.2015.07.008
[13]. Sun, R., Liu, Y., Zhu, H., Azizipanah-Abarghooee, R.,
& Terzija, V. (2019). A network reconfiguration approach
for power system restoration based on preference-based
multiobjective optimization. Applied Soft Computing, 83,
105656. https://doi.org/10.1016/j.asoc.2019.105656
[14]. Taher, S. A., & Karimi, M. H. (2014). Optimal
reconfiguration and DG allocation in balanced and
unbalanced distribution systems. Ain Shams Engineering
Journal, 5(3), 735-749. https://doi.org/10.1016/j.asej.2014.03.009
[15]. Zheng, W., Huang, W., & Hill, D. J. (2020). A deep
learning-based general robust method for network
reconfiguration in three-phase unbalanced active
distribution networks. International Journal of Electrical
Power & Energy Systems, 120, 105982. https://doi.org/10.1016/j.ijepes.2020.105982