References
[1]. Boesch, E., Siadat, A., Rivette, M., & Baqai, A. A.
(2019). Impact of fused deposition modeling (FDM)
process parameters on strength of built parts using
Taguchi's design of experiments. The International Journal
of Advanced Manufacturing Technology, 101(5), 1215-1226. https://doi.org/10.1007/s00170-018-3014-6
[2]. Boparai, K. S., Singh, R., & Singh, H. (2016). Modeling
and optimization of extrusion process parameters for the
development of Nylon6–Al–Al2O3 alternative FDM
filament. Progress in Additive Manufacturing, 1(1), 115-128. https://doi.org/10.1007/s40964-016-0011-x
[3]. Carlier, E., Marquette, S., Peerboom, C., Denis, L.,
Benali, S., Raquez, J. M., ... & Goole, J. (2019).
Investigation of the parameters used in fused deposition
modeling of poly (lactic acid) to optimize 3D printing
sessions. International Journal of Pharmaceutics, 565,
367-377. https://doi.org/10.1016/j.ijpharm.2019.05.008
[4]. Chohan, J. S., Singh, R., & Boparai, K. S. (2016).
Parametric optimization of fused deposition modeling
and vapour smoothing processes for surface finishing of
biomedical implant replicas. Measurement, 94, 602-613.
https://doi.org/10.1016/j.measurement.2016.09.001
[5]. Deswal, S., Narang, R., & Chhabra, D. (2019).
Modeling and parametric optimization of FDM 3D printing
process using hybrid techniques for enhancing
dimensional preciseness. International Journal on
Interactive Design and Manufacturing (IJIDeM), 13(3), 1197-1214. https://doi.org/10.1007/s12008-019-00536-z
[6]. Ding, S., Zou, B., Wang, P., & Ding, H. (2019). Effects of
nozzle temperature and building orientation on
mechanical properties and microstructure of PEEK and
PEI printed by 3D-FDM. Polymer Testing, 78, Article
105948. https://doi.org/10.1016/j.polymertesting.2019.105948
[7]. Gurrala, P. K., & Regalla, S. P. (2014). Multi-objective
optimisation of strength and volumetric shrinkage of FDM
parts: A multi-objective optimization scheme is used to
optimize the strength and volumetric shrinkage of FDM
parts considering different process parameters. Virtual
and Physical Prototyping, 9(2), 127-138. https://doi.org/10.1080/17452759.2014.898851
[8]. Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A.
M. (2019). Mechanical characterization of FDM 3D
printing of continuous carbon fiber reinforced PLA
composites. Composites Part B: Engineering, 175, Article
107147. https://doi.org/10.1016/j.compositesb.2019.107147
[9]. Hwang, C. L., & Yoon, K. (1981). Multiple Attribute
Decision Making Methods and Applications, NY: Springer.
[10]. Ju-Long, D. (1982). Control problems of grey
systems. Systems & Control Letters, 1(5), 288-294.
https://doi.org/10.1016/S0167-6911(82)80025-X
[11]. Kaveh, M., Badrossamay, M., Foroozmehr, E., &
Etefagh, A. H. (2015). Optimization of the printing
parameters affecting dimensional accuracy and internal
cavity for HIPS material used in fused deposition modeling
processes. Journal of Materials Processing Technology,
226, 280-286. https://doi.org/10.1016/j.jmatprotec.2015.07.012
[12]. Kim, N. P., Cho, D., & Zielewski, M. (2019).
Optimization of 3D printing parameters of Screw Type
Extrusion (STE) for ceramics using the Taguchi method.
Ceramics International, 45(2), 2351-2360. https://doi.org/10.1016/j.ceramint.2018.10.152
[13]. Liu, Z., Lei, Q., & Xing, S. (2019). Mechanical
characteristics of wood, ceramic, metal and carbon
fiber-based PLA composites fabricated by FDM. Journal
of Materials Research and Technology, 8(5), 3741-3751. https://doi.org/10.1016/j.jmrt.2019.06.034
[14]. Mahmood, S., Qureshi, A. J., & Talamona, D. (2018).
Taguchi based process optimization for dimension and
tolerance control for fused deposition modelling. Additive
Manufacturing, 21, 183-190. https://doi.org/10.1016/j.addma.2018.03.009
[15]. Malik, A., & Manna, A. (2018). Multi-response
optimization of laser-assisted jet electrochemical
machining parameters based on gray relational analysis.
Journal of the Brazilian Society of Mechanical Sciences
and Engineering, 40(3), 1-21. https://doi.org/10.1007/s40430-018-1069-9
[16]. Manivannan, R., & Kumar, M. P. (2017). Multiattribute
decision-making of cryogenically cooled micro-
EDM drilling process parameters using TOPSIS method.
Materials and Manufacturing Processes, 32(2), 209-215.
https://doi.org/10.1080/10426914.2016.1176182
[17]. Mansour, M., Tsongas, K., & Tzetzis, D. (2019).
Measurement of the mechanical and dynamic
properties of 3D printed polylactic acid reinforced with
graphene. Polymer-Plastics Technology and Materials,
58(11), 1234-1244. https://doi.org/10.1080/03602559.2018.1542730
[18]. Mausam, K., Sharma, K., Bharadwaj, G., & Singh, R.
P. (2019). Multi-objective optimization design of diesinking
electric discharge machine (EDM) machining
parameter for CNT-reinforced carbon fibre
nanocomposite using grey relational analysis. Journal of
the Brazilian Society of Mechanical Sciences and
Engineering, 41(8), 1-8. https://doi.org/10.1007/s40430-019-1850-4
[19]. Mohamed, O. A., Masood, S. H., & Bhowmik, J. L.
(2016a). Experimental investigations of process
parameters influence on rheological behavior and
dynamic mechanical properties of FDM manufactured
parts. Materials and Manufacturing Processes, 31(15),
1983-1994. https://doi.org/10.1080/10426914.2015.1127955
[20]. Mohamed, O. A., Masood, S. H., & Bhowmik, J. L.
(2016b). Mathematical modeling and FDM process
parameters optimization using response surface methodology based on Q-optimal design. Applied
Mathematical Modelling, 40(23-24), 10052-10073.
https://doi.org/10.1016/j.apm.2016.06.055
[21]. Mohamed, O. A., Masood, S. H., & Bhowmik, J. L.
(2016c). Optimization of fused deposition modeling
process parameters for dimensional accuracy using Ioptimality
criterion. Measurement, 81, 174-196. https://doi.org/10.1016/j.measurement.2015.12.011
[22]. Nagendra, J., & Prasad, M.S.G. (2020). FDM process
parameter optimization by Taguchi technique for
augmenting the mechanical properties of nylon–aramid
composite used as filament material. Journal of the
Institution of Engineers (India): Series C, 101, 313–322.
https://doi.org/10.1007/s40032-019-00538-6
[23]. Parthiban, K., Duraiselvam, M., & Manivannan, R.
(2018). TOPSIS based parametric optimization of laser
micro-drilling of TBC coated nickel based superalloy.
Optics & Laser Technology, 102, 32-39. https://doi.org/10.1016/j.optlastec.2017.12.012
[24]. Ransikarbum, K., Ha, S., Ma, J., & Kim, N. (2017).
Multi-objective optimization analysis for part-to-Printer
assignment in a network of 3D fused deposition modeling.
Journal of Manufacturing Systems, 43, 35-46. https://doi.org/10.1016/j.jmsy.2017.02.012
[25]. Rao, R. V., & Rai, D. P. (2016). Optimization of fused
deposition modeling process using teaching-learningbased
optimization algorithm. Engineering Science and
Technology, an International Journal, 19(1), 587-603.
https://doi.org/10.1016/j.jestch.2015.09.008
[26]. Samykano, M., Selvamani, S. K., Kadirgama, K.,
Ngui, W. K., Kanagaraj, G., & Sudhakar, K. (2019).
Mechanical property of FDM printed ABS: influence of
printing parameters. The International Journal of
Advanced Manufacturing Technology, 102(9), 2779-2796. https://doi.org/10.1007/s00170-019-03313-0
[27]. Sindhu, D., Thakur, L., & Chandna, P. (2019). Multiobjective
optimization of rotary ultrasonic machining
parameters for quartz glass using Taguchi-Grey relational
analysis (GRA). Silicon, 11(4), 2033-2044 .https://doi.org/10.1007/s12633-018-0019-6
[28]. Sivaiah, P., & Chakradhar, D. (2017). Multi-objective
optimisation of cryogenic turning process using Taguchibased
grey relational analysis. International Journal of
Machining and Machinability of Materials, 19(4), 297-312.
[29]. Sivaiah, P., & Chakradhar, D. (2018). Multi
performance characteristics optimization in cryogenic
turning of 17-4 PH stainless steel using Taguchi coupled
grey relational analysis. Advances in Materials and
Processing Technologies, 4(3), 431-447. https://doi.org/10.1080/2374068X.2018.1452132
[30]. Sivaiah, P., & Chakradhar, D. (2019). Performance
improvement of cryogenic turning process during
machining of 17-4 PH stainless steel using multi objective
optimization techniques. Measurement, 136, 326-336.
https://doi.org/10.1016/j.measurement.2018.12.094
[31]. Thakur, A., Manna, A., & Samir, S. (2020). Multiresponse
optimization of turning parameters during
machining of EN-24 steel with SiC nanofluids based
minimum quantity lubrication. Silicon, 12(1), 71-85.
https://doi.org/10.1007/s12633-019-00102-y
[32]. Uzun, G. (2019). Analysis of grey relational method of
the effects on machinability per formance on
austempered vermicular graphite cast irons.
Measurement, 142, 122-130. https://doi.org/10.1016/j.measurement.2019.04.059
[33]. Wang, Z., Zhang, T., Yu, T., & Zhao, J. (2020).
Assessment and optimization of grinding process on AISI
1045 steel in terms of green manufacturing using
orthogonal experimental design and grey relational
analysis. Journal of Cleaner Production, 253, Article
119896. https://doi.org/10.1016/j.jclepro.2019.119896
[34]. Yuvaraj, N., & Kumar, M. P. (2015). Multiresponse
optimization of abrasive water jet cutting process
parameters using TOPSIS approach. Materials and
Manufacturing Processes, 30(7), 882-889. https://doi.org/10.1080/10426914.2014.994763