References
[1]. Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., &
Kaur, M. (2021). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and
Dynamics, 39(15), 5682-5689. https://doi.org/10.1080/07391102.2020.1788642
[2]. Afifi, A., Hafsa, N. E., Ali, M. A., Alhumam, A., &
Alsalman, S. (2021). An ensemble of global and localattention
based convolutional neural networks for COVID-
19 diagnosis on chest X-ray images. Symmetry, 13(1), 113. https://doi.org/10.3390/sym13010113
[3]. Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic
detection of coronavirus disease (covid-19) using x-ray
images and deep convolutional neural networks. Pattern
Analysis and Applications, 24(3), 1207-1220.
https://doi.org/10.1007/s10044-021-00984-y
[4]. Abbas, A., Abdelsamea, M. M., & Gaber, M. M.
(2021). Classification of COVID-19 in chest X-ray images
using DeTraC deep convolutional neural network. Applied
Intelligence, 51(2), 854-864. https://doi.org/10.1007/s10489-020-01829-7
[5]. Das, A. K., Ghosh, S., Thunder, S., Dutta, R., Agarwal,
S., & Chakrabarti, A. (2021). Automatic COVID-19
detection from X-ray images using ensemble learning
with convolutional neural network. Pattern Analysis and
Applications, 24(3), 1111-1124. https://doi.org/10.1007/s10044-021-00970-4
[6]. Sharma, A., Rani, S., & Gupta, D. (2020). Artificial
intelligence-based classification of chest X-ray images
into COVID-19 and other infectious diseases.
International Journal of Biomedical Imaging, 2020.
https://doi.org/10.1155/2020/8889023
[7]. Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., &
Saalbach, A. (2019). Comparison of deep learning
approaches for multi-label chest X-ray classification.
Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-42294-8
[8]. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y.,
& Zhang, L. (2020). Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus
pneumonia in Wuhan, China: A descriptive study. The
lancet, 395(10223), 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
[9]. Hansell, D. M., Bankier, A. A., MacMahon, H.,
McLoud, T. C., Muller, N. L., & Remy, J. (2008). Fleischner
Society: glossary of terms for thoracic imaging.
Radiology, 246(3), 697-722. https://doi.org/10.1148/radiol.2462070712
[10]. Lv, D., Qi, W., Li, Y., Sun, L., & Wang, Y. (2020). A
cascade network for detecting covid-19 using chest xrays.
arXiv preprint arXiv:2005.01468. https://doi.org/10.48550/arXiv.2005.01468
[11]. Farooq, M., & Hafeez, A. (2020). Covid-resnet: A
deep learning framework for screening of covid19 from
radiographs. arXiv preprint arXiv:2003.14395.
https://doi.org/10.48550/arXiv.2003.14395
[12]. Rubin, G. D., Ryerson, C. J., Haramati, L. B.,
Sverzellati, N., Kanne, J. P., Raoof, S., & Leung, A. N.
(2020). The role of chest imaging in patient management
during the COVID-19 pandemic: A multinational
consensus statement from the Fleischner Society. Chest,
158(1), 106-116. https://doi.org/10.1016/j.chest.2020.04.003
[13]. Hui, D. S., Azhar, E. I., Madani, T. A., Ntoumi, F., Kock,
R., Dar, O., & Petersen, E. (2020). The continuing 2019-
nCoV epidemic threat of novel coronaviruses to global
health—The latest 2019 novel coronavirus outbreak in
Wuhan, China. International journal of infectious
diseases, 91, 264-266. https://doi.org/10.1016/j.ijid.2020.01.009
[14]. Hasan, M. D., Ahmed, S., Abdullah, Z. M.,
Monirujjaman Khan, M., Anand, D., Singh, A., & Masud,
M. (2021). Deep learning approaches for detecting
pneumonia in COVID-19 patients by analyzing chest X-ray
images. Mathematical Problems in Engineering, 2021.
https://doi.org/10.1155/2021/9929274
[15]. Rahimzadeh, M., & Attar, A. (2020). A modified deep
convolutional neural network for detecting COVID-19 and
pneumonia from chest X-ray images based on the
concatenation of Xception and ResNet50V2. Informatics
in medicine unlocked, 19, 100360. https://doi.org/10.1016/j.imu.2020.100360
[16]. Loey, M., Smarandache, F., &Khalifa, N. E. M. (2020).
Within the lack of chest COVID-19 X-ray dataset: A novel detection model based on GAN and deep transfer
learning. Symmetry, 12(4), 651. https://doi.org/10.3390/sym12040651
[17]. Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep
learning for medical image processing: Overview,
challenges and the future. Classification in BioApps, 323-350. https://doi.org/10.1007/978-3-319-65981-7_12
[18]. Alam, N., Ahsan, M., Based, M. A., Haider, J., &
Kowalski, M. (2021). COVID-19 detection from chest X-ray
images using feature fusion and deep learning. Sensors,
21(4), 1480. https://doi.org/10.3390/s21041480
[19]. Raptis, C. A., Hammer, M. M., Short, R. G., Shah, A.,
Bhalla, S., Bierhals, A. J., & Henry, T. S. (2020). Chest CT
and coronavirus disease (COVID-19): A critical review of
the literature to date. AJR Am J Roentgenol, 215(4), 839-
842. https://doi.org/ 10.2214/AJR.20.23202
[20]. Kumar, R., Arora, R., Bansal, V., Sahayasheela, V. J.,
Buckchash, H., Imran, J., & Raman, B. (2020). Accurate
prediction of COVID-19 using chest X-ray images through
deep feature learning model with SMOTE and machine
learning classifiers. MedRxiv. https://doi.org/10.1101/2020.04.13.20063461
[21]. Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J.
(2021). Deep learning based detection and analysis of
COVID-19 on chest X-ray images. Applied Intelligence,
51(3), 1690-1700. https://doi.org/10.1007/s10489-020-01902-1
[22]. Yasin, R., & Gouda, W. (2020). Chest X-ray findings
monitoring COVID-19 disease course and severity.
Egyptian Journal of Radiology and Nuclear Medicine,
51(1), 1-18. https://doi.org/10.1186/s43055-020-00296-x
[23]. Basu, S., Mitra, S., & Saha, N. (2020, December).
Deep learning for screening covid-19 using chest x-ray
images. In 2020 IEEE Symposium Series on
Computational Intelligence (SSCI) (pp. 2521-2527). IEEE.
https://doi.org/10.1109/SSCI47803.2020.9308571
[24]. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song,
Z. G., ..& Zhang, Y. Z. (2020). A new coronavirus
associated with human respiratory disease in China.
Nature, 579(7798), 265-269. https://doi.org/10.1038/s41586-020-2008-3
[25]. Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E.,
& Greenspan, H. (2015, April). Chest pathology detection
using deep learning with non-medical training. In 2015 IEEE 12th international symposium on biomedical imaging
(ISBI) (pp. 294-297). IEEE. https://doi.org/10.1109/ISBI.2015.7163871