References
[1]. Anderson, J. E., Michalak, E. E., & Lam, R. W. (2002).
Depression in primary care: tools for screening, diagnosis,
and measuring response to treatment. British Columbia
Medical Journal, 44(8), 415-419.
[2]. Bhargava, M., Varshney, R., & Anita, R. (2020). Emotionally Intelligent ChatBot for Mental Healthcare and
Suicide Prevention. International Journal of Advanced
Science and Technology, 29(6), 2597–2605.
[3]. Chowdhary, K. (2020). Natural language processing.
Fundamentals of Artificial Intelligence, 603-649.
https://doi.org/10.1007/978-81-322-3972-7_19
[4]. Deshpande, M., & Rao, V. (2017, December).
Depression detection using emotion artificial intelligence.
In 2017 International Conference on Intelligent
Sustainable Systems (ICISS) (pp. 858-862). IEEE.
https://doi.org/10.1109/ISS1.2017.8389299
[5]. Ding, Y., Chen, X., Fu, Q., & Zhong, S. (2020). A
depression recognition method for college students using
deep integrated support vector algorithm. IEEE Access, 8,
75616-75629. https://doi.org/10.1109/ACCESS.2020.2987523
[6]. Hemanthkumar, M., & Latha, A. (2019). Depression detection with sentiment analysis of tweets. International
Research Journal of Engineering and Technology (IRJET),
6(5), 1197- 1201. https://vitalflux.com/machine-learningfeature-selection-feature-extraction/
[7]. Islam, M., Kabir, M. A., Ahmed, A., Kamal, A. R. M.,
Wang, H., & Ulhaq, A. (2018). Depression detection from
social network data using machine learning techniques.
Health Information Science and Systems, 6(1), 1-12.
https://doi.org/10.1007/s13755-018-0046-0
[8]. Kamite, S. R., & Kamble, V. B. (2020, October).
Detection of depression in social media via twitter using
machine learning approach. In 2020 International
Conference on Smar t Innovations in Design,
Environment, Management, Planning and Computing
(ICSIDEMPC) (pp. 122-125). IEEE. https://doi.org/10.1109/ICSIDEMPC49020.2020.9299641
[9]. Kasthuri, S., & Jebaseeli, A. N. (2020). An efficient
Decision Tree Algorithm for analyzing the Twitter Sentiment
Analysis. Journal of Critical Reviews, 7(4), 1010-1018.
[10]. Kemp, S. (2022). Retrieved from https://blog.
hootsuite.com/simon-kemp-social-media/
[11]. Kumar, A. (2021). Machine Learning – Feature
Selection vs Feature Extraction. Retrieved from
[12]. Priya, A., Garg, S., & Tigga, N. P. (2020). Predicting
anxiety, depression and stress in modern life using
machine learning algorithms. Procedia Computer
Science, 167, 1258-1267. https://doi.org/10.1016/j.procs.2020.03.442
[13]. Ray, S. (2017). 6 Easy Steps to Learn Naive Bayes
Algorithm with codes in Python and R. Retrieved From
https://www.analyticsvidhya.com/blog/2017/09/naivebayes-explained/
[14]. Safa, R., Bayat, P., & Moghtader, L. (2022).
Automatic detection of depression symptoms in twitter
using multimodal analysis. The Journal of
Supercomputing, 78(4), 4709-4744. https://doi.org/10.1007/s11227-021-04040-8
[15]. Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019).
Detection of depression-related posts in reddit social
media forum. IEEE Access, 7, 44883-44893.
https://doi.org/10.1109/ACCESS.2019.2909180
[16]. World Health Organization. (n.d.). Retrieved from
https://www.who.int/news-room/fact-sheets/detail/
depression
[17]. Yalamanchili, B., Kota, N. S., Abbaraju, M. S.,
Nadella, V. S. S., & Alluri, S. V. (2020, February). Real-time
acoustic based depression detection using machine
learning techniques. In 2020 International Conference on
Emerging Trends in Information Technology and
Engineering (ic-ETITE) (pp. 1-6). IEEE. https://doi.org/10.1109/ic-ETITE47903.2020.394
[18]. Zulfiker, M. S., Kabir, N., Biswas, A. A., Nazneen, T., &
Uddin, M. S. (2021). An in-depth analysis of machine
learning approaches to predict depression. Current
Research in Behavioral Sciences, 2, 100044.
https://doi.org/10.1016/j.crbeha.2021.100044