In the last couple of years, the footprints of humankind on the greenhouse effect have been a highlighted and debated topic. There are many contributing factors to the negative impacts on the environment, one of them being the automobile sector. Today, most cars are driven on fossil fuel, which produces toxic emissions. The search for replaceable alternative fuels were considered mainly and the keys to demand are renewable energy and energy-friendly resources. Hydrogen as a fuel, in particular hydrogen gas, is one of the options considering the only residues to be water and hot air, provided that the energy used in the hydrogen production comes from renewable sources. In the storage tanks of cars fueled by hydrogen gas, a high pressure is set due to its advantages of more storage opportunities and thus increased mileage of the tank. A decompression process is necessary to supply the fuel cell with hydrogen gas at the right pressure and thus achieve the highest possible degree of efficiency. The concept offers a wide set of application opportunities in industrial situations, and understanding the valve is important for characterizing the performance of the device. In other words, high performance could be achieved with correct and optimal geometry on the Tesla valve. In this work, the geometric parameters were investigated in order to determine their ideal value for optimizing the performance. The parameters of interest were the optimum operating conditions of the valve. A numerical observation was conducted using simulations in a Computational Fluid Dynamics program, ANSYS Fluent, in order to obtain the results.