References
[1]. Chowdhury, R. K., & Rajashekhar, C. R. (2013). Studies
of Parametric Analysis of high temperature resistance
furnace. International Journal of Engineering Research &
Technology (IJERT), 2(2), 1-15.
[2]. Evans, M. N. (2008). A reactor for high temperature
pyrolysis and oxygen isotopic analysis of cellulose via
induction heating. Rapid Communications in Mass
Spectrometry: An International Journal Devoted to the
Rapid Dissemination of Up to the Minute Research in Mass
Spectrometry, 22(14), 2211-2219. https://doi.org/10.1002/rcm.3603
[3]. Feist, C., & Plankensteiner, A. (2011). Multi-physics
analysis of a refractory metal ac-operated high
temperature heater with abaqus. In Proceedings 2011
SIMULIA Customer Conference, 1-15.
[4]. Gulbransen, E. A. (1947). High tmperature furnace for
electron diffraction studies, Review of Scientific
Instruments 18(8), 546. https://doi.org/10.1063/1.1740999
[5]. Hasan, A. B., Guo, S. M., & Wahab, M. A. (2009).
Analysis of fracture in high-temperature vacuum tube
furnace. Journal of Failure Analysis and Prevention, 9(3),
262-269. https://doi.org/10.1007/s11668-009-9236-z
[6]. Jiang, Q., Yang, F., & Pitchumani, R. (2005). Analysis of
coating thickness variation during optical fiber
processing. Journal of Lightwave Technology, 23(3), 1261.
[7]. Ju, L., Ju, S., & Lin, N. (2010, May). The use of high-temperature electric furnace process technology for the
18–8 stainless steel sensitized effects. In International
Symposium on Computer, Communication, Control and
Automation (3CA), 2, 443-447. https://doi.org/10.1109/3CA.2010.5533337
[8]. Kerch, H. M., Burdette, H. E., & Long, G. G. (1995). A
high-temperature furnace for in situ small-angle neutron
scattering during ceramic processing. Journal of Applied
Crystallography, 28(5), 604-610. https://doi.org/10.1107/S0021889895005280
[9]. Li, Z. Z., Shen, Y. D., Heo, K. S., Lee, J. W., Seol, S. Y.,
Byun, Y. H., & Lee, C. J. (2007). Feasible optimal design of
high temperature vacuum furnace using experiences
and thermal analysis database. Journal of Thermal
Science and Technology, 2(1), 123-133. https://doi.org/10.1299/jtst.2.123
[10]. Ma, L. F., Ding, X. F., Zhang, J., Mao, K. T., & Gong, L.
J. (2012). State analysis on reactor furnace pipe used over
a design cycle. In Advanced Materials Research, 535,
529-532. https://doi.org/10.4028/www.scientific.net/AMR.535-537.529
[11]. Martin, A. J., & Edwards, K. L. (1959). Linear voltage
temperature furnace for thermal analysis. Journal of
Scientific Instruments, 36(4), 170.
[12]. McKinstry, H. A. (1970). Low thermal gradient high
temperature furnace for x ray diffractometers. Journal of
Applied Physics, 41(13), 5074-5079. https://doi.org/10.1063/1.1658603
[13]. Misture, S. T. (2003). Large-volume atmospherecontrolled
high-temperature x-ray diffraction furnace.
Measurement Science and Technology, 14(7), 1091.
[14]. Pickles, C. A. (2009). Thermodynamic analysis of the
selective chlorination of electric arc furnace dust. Journal
of Hazardous Materials, 166(2-3), 1030-1042. https://doi.org/10.1016/j.jhazmat.2008.11.110
[15]. Schueller, R. D., & Wawner, F. E. (1991). An analysis of
high-temperature behavior of AA2124/SiC whisker
composites. Composites Science and Technology, 40(2),
213-223. https://doi.org/10.1016/0266-3538(91)90098-A
[16]. Tuinstra, F. T., & Storm, G. M. F. (1978). A universal hightemperature
device for single-crystal diffraction. Journal
of Applied Crystallography, 11(4), 257-259. https://doi.org/10.1107/S0021889878013278
[17]. Wilson, S. R., Burnham, M. E., Kottke, M., Lorigan, R.
P., Krause, S. J., Jung, C. O., ... & Stoss, P. (1989). An
analysis of high temperature (1150°C) furnace annealing
of buried oxide wafers formed by ion implantation.
Journal of Materials Research, 4(1), 167-176.
https://doi.org/10.1557/JMR.1989.0167
[18]. Yamada, H., Uchino, K., Koizumi, H., Noda, T., &
Yasuda, K. (1978). Spectral interference in antimony
analysis with high temperature furnace atomic
absorption. Analytical Letters, 11(10), 855-868.
https://doi.org/10.1080/00032717808059737