References
[1]. Ahmad, W., Jaiswal, K. K., & Soni, S. (2020). Green
synthesis of titanium dioxide (TiO2) nanoparticles by using
Mentha arvensis leaves extract and its antimicrobial
properties. Inorganic and Nano-Metal Chemistry, 50(10),
1032-1038. https://doi.org/10.1080/24701556.2020.1732419
[2]. Arularasu, M. V. (2019). Effect of organic capping
agents on the optical and photocatalytic activity of
mesoporous TiO2 nanoparticles by sol–gel method. SN
Applied Sciences, 1(5), 1-10. https://doi.org/10.1007/s42452-019-0424-5
[3]. Bari, A. R., Shinde, M. D., Vinita, D. & Patil, L. A. (2009).
Effect of Solvents on the Particle Morphology of
nanostructured ZnO. Indian Journal of Pure & Applied
Physics, 47, 24-27
[4]. Bodson, C. J., Heinrichs, B., Tasseroul, L., Bied, C.,
Mahy, J. G., Man, M. W. C., & Lambert, S. D. (2016).
Efficient P-and Ag-doped titania for the photocatalytic
degradation of waste water organic pollutants. Journal of
Alloys and Compounds, 682, 144-153. https://doi.org/10.1016/j.jallcom.2016.04.295
[5]. Chinwetkitvanich, S., Tuntoolvest, M., & Panswad, T.
(2000). Anaerobic decolorization of reactive dye bath
effluents by twostage uasb system with tapioca as a cosubstrate.
Water Research, 34(8), 2223–2232. https://doi.org/10.1016/S0043-1354(99)00403-0
[6]. Dunlop, M. J., & Bissessur, R. (2020). Nanocomposites
based on graphene analogous materials and
conducting polymers: A review. Journal of Materials
Science, 55(16), 6721-6753. https://doi.org/10.1007/s10853-020-04479-9
[7]. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., &
Maaza, M. (2020). Physical properties, biological
applications and biocompatibility studies on
biosynthesized single phase cobalt oxide (Co3O4 )
nanoparticles via Sageretia thea (Osbeck.). Arabian
Journal of Chemistry, 13(1), 606-619. https://doi.org/10.1016/j.arabjc.2017.07.004
[8]. Li, C., Wang, J., & Su, Y. (2021). A dual-role theory of
the aspect ratio of the nanofillers for the thermal
conductivity of graphene-polymer nano composites.
International Journal of Engineering Science, 160,
103453. https://doi.org/10.1016/j.ijengsci.2020.103453
[9]. Li, J., Lu, W., Chen, S., & Liu, C. (2020). Revealing extra
strengthening and strain hardening in heterogeneous
two-phase nanostructures. International Journal of
Plasticity, 126, 102626. https://doi.org/10.1016/j.ijplas.2019.11.005
[10]. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin,
D. A., Herrera-Alonso, M., Piner, R. D., & Brinson, L. C.
(2008). Functionalized graphene sheets for polymer
nanocomposites. Nature Nanotechnology, 3(6), 327-331. https://doi.org/10.1038/nnano.2008.96
[11]. Ravindran, P., Fast, L., Korzhavyi, P. A., Johansson, B.,
Wills, J., & Eriksson, O. (1998). Density functional theory for
calculation of elastic properties of orthorhombic crystals:
Application to TiSi2. Journal of Applied Physics, 84(9),
4891–4904. https://doi.org/10.1063/1.368733
[12]. Reddy, K. M., & Goswami, K. (2020). Synthesis of Ag
decorated Zn-Co/TiO2 nanocomposites. International
Journal of Chemical Reactor Engineering, 18(10-11).
https://doi.org/10.1515/ijcre-2020-0114
[13]. Sevostianov, I., & Kachanov, M. (2019). On the
effective properties of polycrystals with intergranular
cracks. International Journal of Solids and Structures, 156-
157, 243–250. https://doi.org/10.1016/j.ijsolstr.2018.08.017
[14]. Susniak, M., Pałka, P., & Karwan-Baczewska, J.
(2016). Influence of milling time on the crystallite size of
AlSi5Cu2/SiC composite powder. Archives of Metallurgy
and Materials, 61(2B), 977–980. https://doi.org/10.1515/amm-2016-0166
[15]. Tabandeh-Khorshid, M., Kumar, A., Omrani, E., Kim,
C., & Rohatgi, P. (2020). Synthesis, characterization, and
properties of graphene reinforced metal-matrix
nanocomposites. Composites Part B: Engineering, 183,
107664. https://doi.org/10.1016/j.compositesb.2019.107664
[16]. Zhang, W., Sun, Y., Xiao, Z., Li, W., Li, B., Huang, X., &
Hu, J. (2015). Heterostructures of CuS nanoparticle/ZnO
nanorod arrays on carbon fibers with improved visible and
solar light photocatalytic properties. Journal of Materials
Chemistry A, 3(14), 7304-7313. https://doi.org/10.1039/C5TA00560D
[17]. Zhang, X., Li, H., Lv, X., Xu, J., Wang, Y., He, C., &
Wang, Y. (2018). Facile synthesis of highly efficient
amorphous Mn MIL 100 catalysts: Formation mechanism
and structure changes during application in CO
oxidation. Chemistry–A European Journal, 24(35), 8822-8832. https://doi.org/10.1002/chem.201800773