Overview on Corrosion, Classification and Control Measure: A Study

Mitali Sharma*, Harsh Jindal**, Devanshu Kumar***, Santosh Kumar****, Rakesh Kumar*****
*-*** Department of Computer Science Engineering, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India.
**** Department of Mechanical Engineering, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India.
***** Chandigarh University Mohali, Punjab, India.
Periodicity:November - January'2022
DOI : https://doi.org/10.26634/jfet.17.2.18501

Abstract

Corrosion is a universal natural phenomenon that causes degradation in metal and alloy properties by chemical or electrochemical interaction with their environment. In the United States, the total direct cost of corrosion is estimated at about 300 billion dollars per year, which is about 3.2 percent of the domestic product. This means corrosion has a huge economic loss on national infrastructure, such as bridges, chemical processing, buildings, and waste water treatment. In addition, corrosion not only increases the costs of components, but it is also responsible for life losses or injuries to people, and it reduces the value of goods owing to deterioration of appearance as well as safety hazards. Thus, by retarding either the cathodic or anodic reactions, the rate of corrosion can be reduced by coating, addition of chemical additives (corrosion inhibitors) etc. Hence, the aim of this research paper is to provide an overview of corrosion, its history, importance, classification, and preventive measures.

Keywords

Corrosion, Material Degradation, Classification, Preventive Measure, Environment.

How to Cite this Article?

Sharma, M., Jindal, H., Kumar, D., Kumar, S., and Kumar, R. (2022). Overview on Corrosion, Classification and Control Measure: A Study. i-manager’s Journal on Future Engineering & Technology, 17(2), 26-36. https://doi.org/10.26634/jfet.17.2.18501

References

[1]. Balloy, D., Dauphin, J. Y., & Tissier, J. C. (2007). Study of the comportment of fatty acids and mineral oils on the surface of steel pieces during galvanization. Surface and Coatings Technology, 202(3), 479-485. https://doi.org/10.1 016/j.surfcoat.2007.06.021
[2]. Bancroft, W. D. (1925). Corrosion in Aqueous Solutions. Industrial & Engineering Chemistry, 17(4), 336-338. https:// doi.org/10.1021/ie50184a003
[3]. Bertolini, L., Bolzoni, F., Pedeferri, P., Lazzari, L., & Pastore, T. (1998). Cathodic protection and cathodic preventionin concrete: principles and applications. Journal of Applied Electrochemistry, 28(12), 1321-1331. https://doi.org/10.1023/A:1003404428827
[4]. Burstein, G. T., Liu, C., Souto, R. M., & Vines, S. P. (2004). Origins of pitting corrosion. Corrosion Engineering, Science and Technology, 39(1), 25-30. https://doi.org/10.1179/147842204225016859
[5]. Caines, S., Khan, F., Shirokoff, J., & Qiu, W. (2015). Experimental design to study corrosion under insulation in harsh marine environments. Journal of Loss Prevention in the Process Industries, 33, 39-51. https://doi.org/10.1016/j. jlp.2014.10.014
[6]. Contreras, A., Hernández, S. L., Orozco-Cruz, R., & Galvan-Martínez, R. (2012). Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution. Materials & Design, 35, 281-289. https://doi.org/10.1016/j.matdes.2011.09.011
[7]. Cunha, S. B. (2012, September). Comparison and analysis of pipeline failure statistics. In International Pipeline Conference (Vol. 45158, pp. 521-530). American Society of Mechanical Engineers. https://doi.org/10.1115/IPC2012-90186
[8]. Du, B., Zhou, S. S., & Li, N. L. (2011). Research progress of coloring aluminum pigments by corrosion protection method. Procedia Environmental Sciences, 10, 807-813. https://doi.org/10.1016/j.proenv.2011.09.130
[9]. Frankel, G. S. (2003). Pitting corrosion. ASM Handbook, 13, 236-241. https://doi.org/10.31399/asm.hb.v13a.a0003612
[10]. Hoar, T. P., & Agar, J. N. (1947). Factors in throwing power illustrated by potential-current diagrams. Discussions of the Faraday Society, 1, 162-168. https://doi.org/10.1039/DF9470100162
[11]. Hu, J., Zeng, R., He, J., Sun, W., Yao, J., & Su, Q. (2000, December). Novel method of corrosion diagnosis for grounding grid. In PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No. 00EX409) (Vol. 3, pp. 1365-1370). IEEE. https://doi.org/10.1109/ICPST.2000.898168
[12]. Hwang, K. C., Lee, S., & Lee, H. C. (1998). Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part I: Microstructural analysis. Materials Science and Engineering: A, 254(1-2), 282-295. https://doi.org/10.1016/S0921-5093(98)00626-1
[13]. Jirarungsatian, C., & Prateepasen, A. (2010). Pitting and uniform corrosion source recognition using acoustic emission parameters. Corrosion Science, 52(1), 187-197. https://doi.org/10.1016/j.corsci.2009.09.001
[14]. Jomdecha, C., Prateepasen, A., & Kaewtrakulpong, P. (2007). Study on source location using an acoustic emission system for various corrosion types. Ndt & E International, 40(8), 584-593. https://doi.org/10.1016/j.ndteint.2007.05.003
[15]. Kadhim, M. G., & Ali, M. T. (2017). A critical review on corrosion and its prevention in the oilfield equipment. Journal of Petroleum Research and Studies, 7(2), 162-189. https://doi.org/10.52716/jprs.v7i2.195
[16]. Klinesmith, D. E., McCuen, R. H., & Albrecht, P. (2007). Effect of environmental conditions on corrosion rates. Journal of Materials in Civil Engineering, 19(2), 121-129. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(121)
[17]. Lander, J. J. (1952). Effect of Corrosion and Growth on the Life of Positive Grids in the Lead‐Acid Cell. Journal of The Electrochemical Society, 99(11), 467. https://doi.org/10.1149/1.2779630
[18]. Lee, A. K., & Newman, D. K. (2003). Microbial iron respiration: impacts on corrosion processes. Applied microbiology and biotechnology, 62(2), 134-139. https://doi.org/10.1007/s00253-003-1314-7
[19]. Li, D., Tan, M., Zhang, S., & Ou, J. (2018). Stress corrosion damage evolution analysis and mechanism identification for prestressed steel strands using acoustic emission technique. Structural Control and Health Monitoring, 25(8), e2189. https://doi.org/10.1002/stc.2189
[20]. Li, S. X., Zhang, P. Y., & Yu, S. R. (2014). Experimental study on very high cycle fatigue of martensitic steel of 2Cr13 under corrosive environment. Fatigue & Fracture of Engineering Materials & Structures, 37(10), 1146-1152. https://doi.org/10.1111/ffe.12197
[21]. Liu, B., Liu, Y., Zhu, C., Xiang, H., Chen, H., Sun, L., ... & Zhou, Y. (2019). Advances on strategies for searching for next generation thermal barrier coating materials. Journal of Materials Science & Technology, 35(5), 833-851. https://doi.org/10.1016/j.jmst.2018.11.016
[22]. Liu, X. Q., Zheng, Y. G., Chang, X. C., Hou, W. L., Wang, J. Q., Tang, Z., & Burgess, A. (2009). Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying. Journal of Alloys and Compounds, 484(1-2), 300-307. https://doi.org/10.1016/j.jallcom.2009.04.086
[23]. Lynes, W. (1951). Some historical developments relating to corrosion. Journal of the Electrochemical Society, 98(1), 3C.
[24]. Melchers, R. E. (2005). The effect of corrosion on the structural reliability of steel offshore structures. Corrosion science, 47(10), 2391-2410. https://doi.org/10.1016/j. corsci.2005.04.004
[25]. Mészáros, L., Lengyel, B., & Janászik, F. (1982). Study of the rate of underpaint corrosion by a faradaic distortion method. Materials Chemistry, 7(2), 165-182. https://doi.org/10.1016/0390-6035(82)90078-5
[26]. Musienko, A., & Cailletaud, G. (2009). Simulation of inter-and transgranular crack propagation in polycrystalline aggregates due to stress corrosion cracking. Acta materialia, 57(13), 3840-3855. https://doi.org/10.1016/j.actamat.2009.04.035
[27]. North, N. A., MacLeod, I. D., & Pearson, C. (1987). Corrosion of metals. Conser vation of marine archaeological objects. Pearson Butterworths London, 68- 98. https://doi.org/10.1016/B978-0-408-10668-9.50010-1
[28]. Odewunmi, N. A., Umoren, S. A., Gasem, Z. M., Ganiyu, S. A., & Muhammad, Q. (2015). L-citrulline: An active corrosion inhibitor component of watermelon rind extract for mild steel in HCl medium. Journal of the Taiwan Institute of Chemical Engineers, 51, 177-185. https://doi.org/10.1016/j.jtice.2015.01.012
[29]. Oesch, S., & Faller, M. (1997). Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures. Corrosion Science, 39(9), 1505-1530. https://doi.org/10.1016/S0010-938X (97)00047-4
[30]. Palanisamy, G. (2019). Corrosion inhibitors. Open access peer reviewed chapter, 44-53. https://doi.org/10.5772/intechopen.80542
[31]. Ramírez-Camacho, J. G., Carbone, F., Pastor, E., Bubbico, R., & Casal, J. (2017). Assessing the consequences of pipeline accidents to support land-use planning. Safety science, 97, 34-42. https://doi.org/10.1016/j.ssci.2016.01.021
[32]. Reddy, B., & Sykes, J. M. (2005). Degradation of organic coatings in a corrosive environment: A study by scanning Kelvin probe and scanning acoustic microscope. Progress in Organic Coatings, 52(4), 280-287. https://doi.org/10.1016/j.porgcoat.2004.04.004
[33]. Refait, P., Jeannin, M., Sabot, R., Antony, H., & Pineau, S. (2015). Corrosion and cathodic protection of carbon steel in the tidal zone: Products, mechanisms and kinetics. Corrosion Science, 90, 375-382. https://doi.org/10.1016/j.corsci.2014.10.035
[34]. Screpanti, A., & De Marco, A. (2009). Corrosion on cultural heritage buildings in Italy: a role for ozone?. Environmental pollution, 157(5), 1513-1520. https://doi.org/10.1016/j.envpol.2008.09.046
[35]. Sharma, V., & Thind, T. (2013). Techniques for detection of rusting of metals using image processing: A survey. International Journal of Emerging Science and Engineering, 1, 60-62.
[36]. Shibli, S. M. A., Meena, B. N., & Remya, R. (2015). A review on recent approaches in the field of hot dip zinc galvanizing process. Surface and Coatings Technology, 262, 210-215. https://doi.org/10.1016/j.surfcoat.2014.12.054
[37]. Skrifvars, B. J., Backman, R., Hupa, M., Salmenoja, K., & Vakkilainen, E. (2008). Corrosion of superheater steel materials under alkali salt deposits Part 1: The effect of salt deposit composition and temperature. Corrosion Science, 50(5), 1274-1282. https://doi.org/10.1016/j.corsci.2008.01.010
[38]. Tang, Z. (2019). A review of corrosion inhibitors for rust preventative fluids. Current Opinion in Solid State and Materials Science, 23(4), 100759. https://doi.org/10.1016/j.cossms.2019.06.003
[39]. Vetter, K. J., & Gorn, F. (1973). Kinetics of layer formation and corrosion processes of passive iron in acid solutions. Electrochimica Acta, 18(4), 321-326. https://doi.org/10.1016/0013-4686(73)80036-2
[40]. Wetscher, F., Vorhauer, A., Stock, R., & Pippan, R. (2004). Structural refinement of low alloyed steels during severe plastic deformation. Materials Science and Engineering: A, 387, 809-816. https://doi.org/10.1016/j.msea.2004.01.096
[41]. Wolf, G. K. (1996). An historical perspective of ion bombardment research for corrosion studies. Surface and Coatings Technology, 83(1-3), 1-9. https://doi.org/10.1016/0257-8972(95)02810-2
[42]. Wranglén, G. (1972). An introduction to corrosion and protection of metals. Anti-corrosion methods and materials, 19(11), 5-5. https://doi.org/10.1108/eb006887
[43]. Yamashita, M., Konishi, H., Kozakura, T., Mizuki, J., & Uchida, H. (2005). In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays. Corrosion Science, 47(10), 2492-2498. https://doi.org/10.1016/j.corsci.2004.10.021
[44]. Zamani, N. G., Porter, J. F., & Mufti, A. A. (1986). A survey of computational efforts in the field of corrosion engineering. International Journal for Numerical Methods in Engineering, 23(7), 1295-1311. https://doi.org/10.1002/nme.1620230708
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.