References
[1]. Balloy, D., Dauphin, J. Y., & Tissier, J. C. (2007). Study of
the comportment of fatty acids and mineral oils on the
surface of steel pieces during galvanization. Surface and
Coatings Technology, 202(3), 479-485. https://doi.org/10.1
016/j.surfcoat.2007.06.021
[2]. Bancroft, W. D. (1925). Corrosion in Aqueous Solutions.
Industrial & Engineering Chemistry, 17(4), 336-338. https://
doi.org/10.1021/ie50184a003
[3]. Bertolini, L., Bolzoni, F., Pedeferri, P., Lazzari, L., &
Pastore, T. (1998). Cathodic protection and cathodic
preventionin concrete: principles and applications.
Journal of Applied Electrochemistry, 28(12), 1321-1331.
https://doi.org/10.1023/A:1003404428827
[4]. Burstein, G. T., Liu, C., Souto, R. M., & Vines, S. P. (2004).
Origins of pitting corrosion. Corrosion Engineering, Science
and Technology, 39(1), 25-30. https://doi.org/10.1179/147842204225016859
[5]. Caines, S., Khan, F., Shirokoff, J., & Qiu, W. (2015).
Experimental design to study corrosion under insulation in
harsh marine environments. Journal of Loss Prevention in
the Process Industries, 33, 39-51. https://doi.org/10.1016/j. jlp.2014.10.014
[6]. Contreras, A., Hernández, S. L., Orozco-Cruz, R., &
Galvan-Martínez, R. (2012). Mechanical and environmental
effects on stress corrosion cracking of low carbon pipeline
steel in a soil solution. Materials & Design, 35, 281-289.
https://doi.org/10.1016/j.matdes.2011.09.011
[7]. Cunha, S. B. (2012, September). Comparison and
analysis of pipeline failure statistics. In International Pipeline
Conference (Vol. 45158, pp. 521-530). American Society
of Mechanical Engineers. https://doi.org/10.1115/IPC2012-90186
[8]. Du, B., Zhou, S. S., & Li, N. L. (2011). Research progress
of coloring aluminum pigments by corrosion protection
method. Procedia Environmental Sciences, 10, 807-813.
https://doi.org/10.1016/j.proenv.2011.09.130
[9]. Frankel, G. S. (2003). Pitting corrosion. ASM Handbook,
13, 236-241. https://doi.org/10.31399/asm.hb.v13a.a0003612
[10]. Hoar, T. P., & Agar, J. N. (1947). Factors in throwing
power illustrated by potential-current diagrams. Discussions
of the Faraday Society, 1, 162-168. https://doi.org/10.1039/DF9470100162
[11]. Hu, J., Zeng, R., He, J., Sun, W., Yao, J., & Su, Q. (2000,
December). Novel method of corrosion diagnosis for
grounding grid. In PowerCon 2000. 2000 International
Conference on Power System Technology. Proceedings
(Cat. No. 00EX409) (Vol. 3, pp. 1365-1370). IEEE. https://doi.org/10.1109/ICPST.2000.898168
[12]. Hwang, K. C., Lee, S., & Lee, H. C. (1998). Effects of
alloying elements on microstructure and fracture
properties of cast high speed steel rolls: Part I:
Microstructural analysis. Materials Science and
Engineering: A, 254(1-2), 282-295. https://doi.org/10.1016/S0921-5093(98)00626-1
[13]. Jirarungsatian, C., & Prateepasen, A. (2010). Pitting
and uniform corrosion source recognition using acoustic
emission parameters. Corrosion Science, 52(1), 187-197.
https://doi.org/10.1016/j.corsci.2009.09.001
[14]. Jomdecha, C., Prateepasen, A., & Kaewtrakulpong,
P. (2007). Study on source location using an acoustic
emission system for various corrosion types. Ndt & E International, 40(8), 584-593. https://doi.org/10.1016/j.ndteint.2007.05.003
[15]. Kadhim, M. G., & Ali, M. T. (2017). A critical review on
corrosion and its prevention in the oilfield equipment.
Journal of Petroleum Research and Studies, 7(2), 162-189.
https://doi.org/10.52716/jprs.v7i2.195
[16]. Klinesmith, D. E., McCuen, R. H., & Albrecht, P. (2007).
Effect of environmental conditions on corrosion rates.
Journal of Materials in Civil Engineering, 19(2), 121-129.
https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(121)
[17]. Lander, J. J. (1952). Effect of Corrosion and Growth on
the Life of Positive Grids in the Lead‐Acid Cell. Journal of The
Electrochemical Society, 99(11), 467. https://doi.org/10.1149/1.2779630
[18]. Lee, A. K., & Newman, D. K. (2003). Microbial iron
respiration: impacts on corrosion processes. Applied
microbiology and biotechnology, 62(2), 134-139. https://doi.org/10.1007/s00253-003-1314-7
[19]. Li, D., Tan, M., Zhang, S., & Ou, J. (2018). Stress
corrosion damage evolution analysis and mechanism
identification for prestressed steel strands using acoustic
emission technique. Structural Control and Health
Monitoring, 25(8), e2189. https://doi.org/10.1002/stc.2189
[20]. Li, S. X., Zhang, P. Y., & Yu, S. R. (2014). Experimental
study on very high cycle fatigue of martensitic steel of
2Cr13 under corrosive environment. Fatigue & Fracture of
Engineering Materials & Structures, 37(10), 1146-1152.
https://doi.org/10.1111/ffe.12197
[21]. Liu, B., Liu, Y., Zhu, C., Xiang, H., Chen, H., Sun, L., ... &
Zhou, Y. (2019). Advances on strategies for searching for
next generation thermal barrier coating materials. Journal
of Materials Science & Technology, 35(5), 833-851. https://doi.org/10.1016/j.jmst.2018.11.016
[22]. Liu, X. Q., Zheng, Y. G., Chang, X. C., Hou, W. L.,
Wang, J. Q., Tang, Z., & Burgess, A. (2009). Microstructure
and properties of Fe-based amorphous metallic coating
produced by high velocity axial plasma spraying. Journal
of Alloys and Compounds, 484(1-2), 300-307. https://doi.org/10.1016/j.jallcom.2009.04.086
[23]. Lynes, W. (1951). Some historical developments
relating to corrosion. Journal of the Electrochemical Society, 98(1), 3C.
[24]. Melchers, R. E. (2005). The effect of corrosion on the
structural reliability of steel offshore structures. Corrosion
science, 47(10), 2391-2410. https://doi.org/10.1016/j.
corsci.2005.04.004
[25]. Mészáros, L., Lengyel, B., & Janászik, F. (1982). Study
of the rate of underpaint corrosion by a faradaic distortion
method. Materials Chemistry, 7(2), 165-182. https://doi.org/10.1016/0390-6035(82)90078-5
[26]. Musienko, A., & Cailletaud, G. (2009). Simulation of
inter-and transgranular crack propagation in
polycrystalline aggregates due to stress corrosion
cracking. Acta materialia, 57(13), 3840-3855. https://doi.org/10.1016/j.actamat.2009.04.035
[27]. North, N. A., MacLeod, I. D., & Pearson, C. (1987).
Corrosion of metals. Conser vation of marine
archaeological objects. Pearson Butterworths London, 68-
98. https://doi.org/10.1016/B978-0-408-10668-9.50010-1
[28]. Odewunmi, N. A., Umoren, S. A., Gasem, Z. M.,
Ganiyu, S. A., & Muhammad, Q. (2015). L-citrulline: An
active corrosion inhibitor component of watermelon rind
extract for mild steel in HCl medium. Journal of the Taiwan
Institute of Chemical Engineers, 51, 177-185. https://doi.org/10.1016/j.jtice.2015.01.012
[29]. Oesch, S., & Faller, M. (1997). Environmental effects
on materials: The effect of the air pollutants SO2, NO2, NO
and O3 on the corrosion of copper, zinc and aluminium. A
short literature survey and results of laboratory exposures.
Corrosion Science, 39(9), 1505-1530. https://doi.org/10.1016/S0010-938X (97)00047-4
[30]. Palanisamy, G. (2019). Corrosion inhibitors. Open
access peer reviewed chapter, 44-53. https://doi.org/10.5772/intechopen.80542
[31]. Ramírez-Camacho, J. G., Carbone, F., Pastor, E.,
Bubbico, R., & Casal, J. (2017). Assessing the
consequences of pipeline accidents to support land-use
planning. Safety science, 97, 34-42. https://doi.org/10.1016/j.ssci.2016.01.021
[32]. Reddy, B., & Sykes, J. M. (2005). Degradation of
organic coatings in a corrosive environment: A study by
scanning Kelvin probe and scanning acoustic microscope. Progress in Organic Coatings, 52(4), 280-287.
https://doi.org/10.1016/j.porgcoat.2004.04.004
[33]. Refait, P., Jeannin, M., Sabot, R., Antony, H., & Pineau,
S. (2015). Corrosion and cathodic protection of carbon
steel in the tidal zone: Products, mechanisms and kinetics.
Corrosion Science, 90, 375-382. https://doi.org/10.1016/j.corsci.2014.10.035
[34]. Screpanti, A., & De Marco, A. (2009). Corrosion on
cultural heritage buildings in Italy: a role for ozone?.
Environmental pollution, 157(5), 1513-1520. https://doi.org/10.1016/j.envpol.2008.09.046
[35]. Sharma, V., & Thind, T. (2013). Techniques for
detection of rusting of metals using image processing: A
survey. International Journal of Emerging Science and
Engineering, 1, 60-62.
[36]. Shibli, S. M. A., Meena, B. N., & Remya, R. (2015). A
review on recent approaches in the field of hot dip zinc
galvanizing process. Surface and Coatings Technology,
262, 210-215. https://doi.org/10.1016/j.surfcoat.2014.12.054
[37]. Skrifvars, B. J., Backman, R., Hupa, M., Salmenoja, K.,
& Vakkilainen, E. (2008). Corrosion of superheater steel
materials under alkali salt deposits Part 1: The effect of salt
deposit composition and temperature. Corrosion Science,
50(5), 1274-1282. https://doi.org/10.1016/j.corsci.2008.01.010
[38]. Tang, Z. (2019). A review of corrosion inhibitors for rust
preventative fluids. Current Opinion in Solid State and
Materials Science, 23(4), 100759. https://doi.org/10.1016/j.cossms.2019.06.003
[39]. Vetter, K. J., & Gorn, F. (1973). Kinetics of layer
formation and corrosion processes of passive iron in acid
solutions. Electrochimica Acta, 18(4), 321-326. https://doi.org/10.1016/0013-4686(73)80036-2
[40]. Wetscher, F., Vorhauer, A., Stock, R., & Pippan, R.
(2004). Structural refinement of low alloyed steels during
severe plastic deformation. Materials Science and
Engineering: A, 387, 809-816. https://doi.org/10.1016/j.msea.2004.01.096
[41]. Wolf, G. K. (1996). An historical perspective of ion
bombardment research for corrosion studies. Surface and
Coatings Technology, 83(1-3), 1-9. https://doi.org/10.1016/0257-8972(95)02810-2
[42]. Wranglén, G. (1972). An introduction to corrosion and
protection of metals. Anti-corrosion methods and
materials, 19(11), 5-5. https://doi.org/10.1108/eb006887
[43]. Yamashita, M., Konishi, H., Kozakura, T., Mizuki, J., &
Uchida, H. (2005). In situ observation of initial rust formation
process on carbon steel under Na2SO4 and NaCl solution
films with wet/dry cycles using synchrotron radiation X-rays.
Corrosion Science, 47(10), 2492-2498. https://doi.org/10.1016/j.corsci.2004.10.021
[44]. Zamani, N. G., Porter, J. F., & Mufti, A. A. (1986). A
survey of computational efforts in the field of corrosion
engineering. International Journal for Numerical Methods
in Engineering, 23(7), 1295-1311. https://doi.org/10.1002/nme.1620230708