Computational Study of Synchronization and Anti-Synchronization In Mimas-Tethys System

Ayub Khan*, 0**
* Associate Professor, Department of Mathematics, Zakir Husain College, University of Delhi, New Delhi, India.
** Assistant Professor, Department of General Requirements, College of Applied Sciences, Nizwa, Oman.
Periodicity:April - June'2012
DOI : https://doi.org/10.26634/jmat.1.2.1849

Abstract

In this paper, we have investigated the synchronization and anti-synchronization behaviour of two identical dynamical model of mimas-tethys system (Moons of Saturn) evolving from different initial conditions using the active control technique based on the Lyapunov stability theory and Routh-Hurwitz criteria. The designed controller, with our own choice of the coefficient matrix of the error dynamics that satisfy the Lyapunov stability theory and the Routh-Hurwitz criteria, are found to be effective in the stabilization of the error states at the origin, thereby, achieving synchronization and anti-synchronization between the states variables of two nonlinear dynamical systems under consideration. The results are validated by numerical simulations using mathematica.

Keywords

Synchronization; Anti-synchronization (AS); Active control.

How to Cite this Article?

Khan, A., and Shahzad, M. (2012). Computational Study of Synchronization and Anti-Synchronization in Mimas-Tethys System. i-manager’s Journal on Mathematics, 1(2), 26-33. https://doi.org/10.26634/jmat.1.2.1849

References

[1]. Hubler, A.W. (1989). Adaptive control of chaotic system. J. Helv Phys. Acta: 62, 343-346.
[2]. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Phys Rev. Lett.: 64, 821-824.
[3]. Carroll, T. M., & Pecora, L. M. (1991). Synchronizing a chaotic system. IEEE Trans. Circuits Systems: 38, 453-456.
[4]. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports: 366, 1-101.
[5]. Chen, G., & Dong, X. (1998). From Chaos to Order: Methodologies, Perspectives and Applications. Singapore: World Scientific.
[6]. Schuster, H. G. (1999). Handbook of Chaos Control. Weinheim: Wiley-VCH.
[7]. Sprott, J. C. (2003). Chaos and Time-Series Analysis. Oxford: Oxford University Press.
[8]. Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. J. Phys. Rev. Lett., 64: 1196-1199.
[9]. Diebner, H. H., & Grond, F. (2005). Usability of synchronization for cognitive modeling. Chaos, Solitons Fractals. 25: 905- 910.
[10]. Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A Universal Concept in Nonlinear Science, Cambridge: Cambridge University Press.
[11]. González Salas, J. S., Cantón, E. C., Salazar, F. C. O., & Cantón, I. C. (2008). Forced synchronization of a self-sustained chaotic oscillator. Chaos: 18, 023136.
[12]. Li, C., Chen, L., &. Aihara, K. (2008). Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks. Chaos: 18, 023132.
[13]. Huang, T., Li, C., & Liao, X. (2007). Synchronization of a class of coupled chaotic delayed systems with parameter mismatch. Chaos: 17, 033121.
[14]. Wang, X.Y., & Wu, X.J. (2006). Tracking control and synchronization of four-dimensional hyperchaotic Rössler system. Chaos: 16, 033121.
[15]. Astakhov, V. V., Anishchenko, V.S., Kapitaniak, T., & Shabunin, A.V. (1997). Synchronization of chaotic oscillators by periodic parametric perturbations. Physica D: 109, 11-16.
[16]. Chua, L.O., Yang, T., Zhong, G.Q., & Wu, C.W. (1996). Adaptive Synchronization of Chua's Oscillators. Int. J. Bifurcation Chaos: 6, 189-201.
[17]. Li, Z., Chen, G., Shi, S., & Han, C. (2003). Robust adaptive tracking control for a class of uncertain chaotic systems. Phys. Lett. A: 310, 40-43.
[18]. Liao, T.L. (1998). Adaptive Synchronization of Two Lorenz Systems. Chaos, Solitons Fractals: 9, 1555-61.
[19]. Wang, Y., Guan, Z. H., & Wen, X. (2004). Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos, Solitons Fractals: 19, 899-903.
[20]. Wu, C.W., Yang, T., & Chua, L.O. (1996). On Adaptive Synchronization and Control of Nonlinear Dynamical System. Int. J. Bifurcation Chaos: 6, 455-471.
[21]. Salarieh, H., & Shahrokhi, M. (2008). Adaptive synchronization of two different chaotic systems with time varying unknown parameters. Chaos, Solitons Fractals: 37, 125-136.
[22]. Li, X., Xu, W., & Xiao, Y. (2008). Adaptive tracking control of a class of uncertain chaotic systems in the presence of random perturbations. J. Sound Vib.: 314, 526-535.
[23]. Yan, J.J., Hung, M.L., & Liao, T.L. (2006). Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters. J. Sound Vib.: 298, 298-306.
[24]. Fang, J. Q., Hong, Y., & Chen, G. (1999). Switching manifold approach to chaos synchronization. Phys. Rev. E: 59, R2523-R2526.
[25]. Yin, X., Ren, Y., & Shan, X. (2002). Synchronization of discrete spatiotemporal chaos by using variable structure control. Chaos, Solitons Fractals: 14, 1077-82.
[26]. Yassen, M.T. (2006). Chaos control of chaotic dynamical systems using backstepping design. Chaos, Solitons Fractals: 27, 537-548.
[27]. Yassen, M.T. (2007). Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Phys. Lett. A: 360, 582-587.
[28]. Lu, J., & Zhang, S. (2001). Controlling Chen's chaotic attractor using backstepping design based on parameters identification. Phys. Lett. A. 286, 148-152.
[29]. Wang, C., & Ge, S. S. (2001). Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, Solitons Fractals: 12, 1199-206.
[30]. Shahzad, M. (2011). Synchronization Behaviour of the Rotational Dynamics of Enceladus Via Active Control. Higher Education of Nature Science: 1 (1), 1-6.
[31]. Vincent, U. E., & Ucar, A. (2007). Synchronization and anti-synchronization of chaos in permanent magnet reluctance machine. Far East J. Dynamical Systems: 9, 211-221.
[32]. Vincent, U. E., & Laoye, J. A. (2007). Synchronization, anti-synchronization and current transport in non-identical chaotic ratchets. Physica A: 384, 230-240.
[33]. Khan, A., & Shahzad, M. (2008). Control of chaos in the Hamiltonian system of Mimas-Tethys. Astronomical J.: 136, 2201-3.
[34]. Nimeijer, H., & Mareels Ivan, M.Y. (1997). An observer looks at Synchronization, IEEE Trans. Circ. Syst.: 144, 882-890.
[35]. Kim, C.M., Rim, S., Kye, W.H., Ryu, J.W., & Park, Y.J. (2003). Anti-synchronization of chaotic oscillators. Phys. Lett. A: 320, 39-49.
[36]. Emadzadeh, A.A., & Haeri, M. (2005). Anti-synchronization of two different chaotic systems via active control. Trans. Eng. Comp. & Tech.: 6, 62-65.
[37]. Li, C., & Liao, X. (2006). Anti-synchronization of a class of coupled chaotic systems via linear feedback control, Int. J. Bifurc. & Chaos: 16, 1041-7.
[38]. Cai, G., & Zheng, S. (2008). Anti-synchronization in different hyperchaotic systems. Journal of Information & Computing Science: 3, 181-8.
[39]. Shahzad, M. (2011). Synchronization and Anti-synchronization of a Planar Oscillation of Satellite in an Elliptic Orbit via Active Control. Journal of Control Science and Engineering, 2011: 816432.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.